简体中文

The constantly developing world of all-weather laser satellite communication

218
2023-12-01 14:18:23
查看翻译

Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.

 

In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstration of optical communication technology occurred in the mid-1990s. For example, the Japan Communications Research Laboratory successfully demonstrated laser communication experiments on the Japanese Engineering Test Satellite VI in 1994, which was the first dedicated laser communication satellite used to demonstrate air to ground laser communication.

The reason for this interest in laser communication is that the optical communication systems we know today have several advantages over the currently used UHF, SHF, and EHF systems, including higher data rates, better signal-to-noise ratios due to higher directionality, no interference, smaller antennas, lower overall power requirements, higher spectrum availability, and narrower beams that are more difficult to intercept and interfere with, And establishing a network does not require coordination from the International Telecommunication Union.

As mentioned earlier, capacity has a major advantage. The spectrum is several thousand times larger than the radio frequency spectrum; Therefore, when the radio frequency ranges from approximately 300 Hz to 300 GHz, the spectrum ranges from approximately 400 to 800 terahertz. The frequency is so high that so many zeros are required, to the extent that optical communication systems are measured in nanometers, with 800 nm being a typical wavelength/frequency. Although the implemented data rate depends on the signal encoding scheme, generally speaking, they may be a thousand times higher than the rate in RF communication.

For many years, satellite laser communication has been a characteristic of the Ministry of National Defense's planning. Those involved in the ill fated transformational satellite communication program believe that it is necessary to connect TSAT's orbital laser satellite network with the global fiber optic network of the defense information system network, which connects the orbital laser ring in space to the ground global laser ring of the global fiber optic network. The solution is to deploy the Earth station in geographically dispersed mild weather locations to avoid the dissipation effects of rain, drizzle, clouds, fog, and dust.

This solution illustrates the drawbacks of known optical communication systems today. These systems have higher pointing accuracy required by satellites, increasing complexity and availability risks, and are noise sources for solar receivers. As mentioned earlier, they are the main interference factors in rain, drizzle, clouds, fog, and dust.

Despite atmospheric barriers, some experiments and systems are using air to ground lasers. Since the beginning of 2022, NASA's laser communication relay demonstration has demonstrated bidirectional laser communication from geostationary orbit.

The drawing board, brass plate, prototype, and initial launch of giant satellite constellations have multiple laser dependent networks. Telesat in Canada, with its constellation of light speed, may be a microcosm of laser communication networks, developing satellite to satellite connections on similar and different orbits. Although the system has been plagued by financial difficulties, design changes and increased investment seem to be putting it back on track. SpaceX's Starlink satellite internet service has launched over 25 satellites, and last year it was confirmed that laser satellites were used to provide internet connectivity to several regions, even though it was only air to air. Low Earth orbit satellites have over 5000 systems and concepts, providing numerous proposals and contract requests for laser terminal manufacturers.

Source: Laser Net

相关推荐
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    查看翻译
  • Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

    Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.The importance of micr...

    2023-09-27
    查看翻译
  • Coherent's total fiscal 2023 revenue was $5.16 billion, with laser business accounting for 29 percent

    On August 16, Coherent, an American laser system solutions provider, announced its fiscal year 2023 and fourth quarter results for the year ended June 30, 2023. This is also the first annual report released after the merger of II-VI and Coherent.Fiscal year 2023 revenueCoherent reported revenue of $5.16 billion for the full fiscal year 2023, up 56% year over year.By business unit, the Networking b...

    2023-08-17
    查看翻译
  • Manz AG officially announces its application for bankruptcy restructuring

    Last month, Manz AG officially announced that the company is about to undergo bankruptcy restructuring. The board of directors of the company believes that due to insufficient liquidity and excessive debt, Manz AG intends to apply for bankruptcy proceedings in accordance with bankruptcy laws. The application is expected to be submitted in the next few days. Manz AG is headquartered in Reutlingen...

    01-07
    查看翻译
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    查看翻译