简体中文

Due to research conducted by scientists from South Korea and the UK, the power of lasers will increase by one million times

463
2023-11-27 14:11:24
查看翻译

Due to research conducted by scientists from South Korea and the UK, the power of lasers will be able to increase by one million times. The researchers plan to apply this improvement for scientific purposes.

The study was led by representatives of Strathclyde University and the Korea Institute UNIST and GIST. Behind the scenes footage of their work in the journal Nature Photonics. It has been proven that the key to success is to conduct simulations to demonstrate what changes are needed to significantly improve the capability of the device that emits laser pulses.

Based on their analysis, the research team concluded that the breakthrough moment will be to use the plasma density gradient to initiate the photon fusion process. If theoretical results are translated into actual situations, the increase in laser power compared to current results may exceed one million times.

What kind of results are we discussing? I just want to say that the power of the laser used so far - of course, the most powerful laser - is about 10 petawatts. This device is called Vulcan 20-20 and is expected to have a power of 20 petawatt. On the other hand, the upper atmosphere of Earth receives 173 watts of sunlight, of which about one-third of the radiation reaches the surface of our planet.

Powerful lasers can be used for various experiments, such as simulating the conditions inside stars.

As explained by experts, the use of terawatt or petawatt lasers makes it possible to create a new generation of laser plasma accelerators. A sufficiently powerful laser also provides answers to fundamental questions, such as the essence of matter and vacuum. These are just some of the issues covered by the research. Some even talk about conducting experiments at the so-called Schwinger limit, which assumes that light can be converted into matter.

All ideas related to the potential capabilities of this extremely powerful laser will be tested by research team members from the UK and South Korea. According to the representative of Strathclyde University, understanding the nature of matter and vacuum with intensity exceeding 1024 watts per square centimeter is one of the greatest challenges facing modern physics. Thanks to high-energy lasers, it is also possible to simulate the interior of stars and different parts of the solar system.

Source: Laser Net

相关推荐
  • Magdalena Ridge expands the capacity of optical interferometers

    The Magdalena Ridge Observatory has purchased a second-generation off-axis beam compressor from Optical Surface, which will expand the functionality of the facility's optical interferometer.Interferometer is a research tool that combines two or more light sources to create interference patterns that can be measured and analyzed. In astronomy, interferometers combine the light collected by multiple...

    2024-01-05
    查看翻译
  • Underwater laser cutting has been achieved with several advantages over common technologies such as saws, automatic wire saws and plasma cutting machines

    Due to the growing demand for renewable energy, the need for modern technologies to dismantle existing underwater infrastructure is also growing.For example, in order to boost the power of an offshore wind farm to a higher level, the existing old steel frame, which may be below sea level, must first be removed so that engineers can rebuild the steel frame for higher power.In laboratory tests, rese...

    2023-09-13
    查看翻译
  • Stratasys Ltd. receives a $120 million investment from Fortissimo Capital

    It is reported that Stratasys Ltd. (NASDAQ: SSYS) announced on February 2nd that it has received a $120 million investment from Fortissimo Capital, an Israeli private equity firm. This transaction directly purchases 11.65 million newly issued shares at a price of $10.30 per share, representing a premium of 10.6% compared to the company's closing price on January 31, 2025. As of press time, it has ...

    02-05
    查看翻译
  • Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

    Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using ...

    2024-05-27
    查看翻译
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    查看翻译