简体中文

Commitment to achieving 100 times the speed of on-chip lasers

474
2023-11-13 14:43:08
查看翻译

Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.

By operating these lasers on such a time scale, researchers can study the rapid occurrence of physical and chemical phenomena.
For example, the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within a material. These ultra short pulses are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

A New Method for Manufacturing Ultrafast Lasers
In an article in the journal Science, Alireza Marandi, an assistant professor of electrical engineering and applied physics at the California Institute of Technology, described a new method developed by his laboratory for manufacturing this type of laser on photonic chips, called a mode-locked laser.

Lasers are manufactured using nanoscale components that can be integrated into optical based circuits similar to those found in modern electronics based on electrical integrated circuits.

Ultra fast laser for research
This type of ultrafast laser is so important for research that this year's Nobel Prize in Physics was awarded to three scientists in recognition of their development of lasers that generate attosecond pulses.

On the other hand, these lasers are currently very expensive and bulky, and Alireza Marandi pointed out that he is exploring ways to achieve this time scale on chips that can be several orders of magnitude cheaper and smaller in size, with the aim of developing affordable and deployable ultrafast optonics technologies.

in summary
Ultra fast lasers are crucial for research and industry, but their cost and size remain the main obstacles. The work of Professor Marandi and his team aims to overcome these challenges by developing mode-locked lasers on photonic chips, making these technologies easier to obtain and more affordable. Their research can pave the way for new applications in various fields, from basic research to industry.

To better understand
What is ultrafast laser?
An ultrafast laser is a type of laser that can emit extremely short pulses, approximately one trillionth of a second (one picosecond) or shorter. These lasers are particularly useful in biological, chemical, and physical research and can be used to study rapidly occurring phenomena.

Why is ultrafast lasers important for research?
Ultra fast lasers enable researchers to study extremely fast physical and chemical phenomena, such as the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within materials. They are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

What is a mode-locked laser?
A mode-locked laser is an ultra fast laser that can be manufactured on photonic chips. These lasers are made of nanoscale components that can be integrated into optical based circuits similar to those found in modern electronic products based on electrical integrated circuits.

What are the advantages of ultrafast lasers on chips?
Compared with traditional ultrafast lasers, on-chip ultrafast lasers can be several orders of magnitude cheaper and have a smaller volume, making them easier to use in research and industry. In addition, they can also be combined with other components to build complete ultrafast photonics systems on integrated circuits.

What are the future goals of ultrafast laser chips?
The goal of the researchers is to improve this technology so that it can operate at shorter time scales and higher peak power. The goal is to achieve 50 femtoseconds, which will be 100 times higher than the current device that generates 4.8 picosecond pulses.

Source: Laser Network

相关推荐
  • Marilli won the "2024 CES Innovation Award": Laser and optical taillights produce 1mm of light

    Marelli is a company specialized in the field of automotive lighting, which has won the prestigious "2024 CES Innovation Award Winner" for its revolutionary red laser and fiber optic taillight technology. This innovative solution, showcased at the 2024 Consumer Electronics Show, for the first time combines the functionality of red laser with taillights, opening up a new perspective for car design....

    2024-01-16
    查看翻译
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    查看翻译
  • Yangtze Welcomes 8th Overseas Production Site

    On August 8, local time, Jalisco, Mexico welcomed the grand opening of Yangtze Optics Mexico Cable S.A. de C.V., marking the eighth overseas production base of Yangtze Optical Fiber & Cable Co. ("Yangtze Fiber Optics") has successfully set up its eighth overseas production base in its 36-year development history, further advancing its internationalization strategy blueprint. Today, we are pr...

    2024-08-14
    查看翻译
  • Laser gyroscopes measure small changes in daytime length on Earth

    Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolongin...

    2023-09-19
    查看翻译
  • Redefining the Future of Sensing: In depth Study of Novel Plasma Waveguide Structures

    Imagine in such a world, the detection of trace substances is not only fast, but also incredibly accurate, indicating a new era of technological progress in health, safety, and environmental monitoring. Due to pioneering research on plasma waveguide structures, this vision is becoming increasingly realistic, aimed at enhancing refractive index sensing and spectral filtering. This innovative method...

    2024-03-04
    查看翻译