简体中文

The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

646
2023-10-26 13:58:46
查看翻译

Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.

The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.

The Laser Energy Laboratory (LLE) at the University of Rochester is one of the few facilities in the world that studies laser driven inertial confinement fusion (ICF). Scientists use these facilities for national security purposes and obtain energy from nuclear fusion.
Valeri Goncharov, the director of the theoretical department and scientist at the laboratory, said, "A new supercomputer located at the university will enable researchers to simulate complex high-energy density phenomena in ICF in three-dimensional space with unprecedented detail.

For example, it is very difficult, if not impossible, to directly measure the evolution of micrometer scale target defects in implosion. However, detailed 3D simulations can simulate how this phenomenon changes experimental observations that are easier to measure, "Goncharov explained." Discovering the correlation between simulation results and experimental data will help determine the importance of sub scale target features and other complex physical effects in experiments.

The machine is called "Conesus" and is manufactured by Intel and developed in collaboration with Dell Technologies and Lawrence Livermore National Laboratory (LLNL). It is currently one of the only seven fourth generation Intel Sapphire Rapids systems worldwide and one of the only two systems in the United States.

The 'TOP 500 List' project began in 1993 and publishes the latest list of the world's most powerful supercomputers twice a year.

How will laser fusion experiments benefit?
The Laser Energy Laboratory at the University of Rochester has two very powerful lasers - Omega and Omega EP - used by researchers for research, including those involving ICF. Last year, scientists made a breakthrough in ignition (i.e. fusion reactions that generate net energy gain) at LLNL's National Ignition Facility (NIF), and this work is based on this breakthrough.

William Scullin, the head of the high-performance computing team at the laboratory, said, "Approximately 10 times a day, our laser is used to create a high-energy star in a jar
But the path to laser driven inertial confinement fusion (ICF) begins with supercomputers modeling materials, lasers, and experiments themselves.

Scullin said, "We have 1D, 2D, and 3D modeling capabilities to simulate inertial confinement fusion. We simulate materials and plasma under extreme temperatures and pressures. High power lasers are not commercially available components. Therefore, we have designed many of our own optical and laser systems internally. In addition, there is an increasing amount of statistical work to be done.

According to Scullin, as the demand for statistical analysis increases, computational scientists are exploring how to use machine learning to discover what from old and new data. To make these discoveries possible, LLE needs new computing resources.
Scullin stated that Conesus will provide scientists with computing resources to collect more data and conduct high-resolution research, including using machine learning on larger datasets. Projects that may take 30 weeks to complete on early systems can be completed within a few days using Conesus.

Conesus has planned several projects, including testing a statistical model for low-temperature implosion in Omega laser systems; simulation α Particle cessation and combustion of plasma; Studying liquid crystals produces large responses and has very high thermal stability.

The Laser Energy Laboratory (LLE) at the University of Rochester will accommodate two 25 gigawatt lasers as part of a project supported by the National Science Foundation (NSF) at the University of Rochester, with a budget of $18 million and a duration of 3 years. As part of this project, the laboratory will establish a new facility called EP-OPAL, which will be dedicated to studying the interaction between ultra-high intensity lasers and matter.

Source: OFweek

相关推荐
  • Global manufacturer JQ Laser launches a new fully automatic pipe laser cutting machine equipped with a fully automatic feeding device

    JQ LASER, a global manufacturer specializing in laser cutting machines, has launched a new fully automatic pipeline laser cutting machine model T120A.According to JQ LASER's report on the 16th, the body of this new product adopts a vertical rather than horizontal design, reducing the machining center and improving stability.In the past, traditional double chuck pipe cutting machines had a fixed fr...

    2023-10-18
    查看翻译
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    查看翻译
  • Zhuoli Laser South Korea Branch Officially Opened

    In recent years, the performance of Chinese laser technology enterprises in the international market has become increasingly eye-catching. On September 20th, under the joint witness of nearly a hundred customer representatives from various industries in South Korea, the opening ceremony of Zhuolai Laser South Korea Branch was officially held.The branch is located in the Gyeonggi do region of south...

    2023-09-23
    查看翻译
  • Coherent CEO Resigns in Restructuring

    Recently, laser giant Coherent (COHR) released an announcement.Coherent Corporation announced that President Walter R. Bashaw II will resign on September 6, 2024, due to a company restructuring that resulted in the cancellation of his position.His resignation is classified as a 'Good Reason' termination, which ensures that he will receive full severance compensation in accordance with existing com...

    2024-08-20
    查看翻译
  • New Meltio robot unit provides large-scale line laser DED

    Meltio is an expert in the field of cost-effective linear laser metal deposition additive manufacturing technology (directed energy deposition, DED) and has launched the new Meltio Robot Cell, a turnkey metal additive manufacturing solution equipped with industrial robotic arms and the recently launched slicing software Meltio Space.The new hardware aligns with the vision of this Spanish company t...

    2023-09-22
    查看翻译