简体中文

Semiconductor lasers will support both TE and TM modes

853
2023-10-20 11:51:32
查看翻译

Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:

A chip without ridge waveguide design and narrow ridge waveguide chip B. For coherent light sources, the far-field pattern is essentially the Fourier transform of the near-field pattern (mode shape in the device).
The far field pattern of a single mode is a moderate 30 ° divergence angle for a ridge waveguide device, while the far field pattern of a large area device is stretched very long, emitting several degrees in the plane and very much out of the plane. It is not difficult to couple to optical fibers in the later stage.

The second reason why lasers require single mode is that it is necessary for devices to achieve true single wavelength. DFB laser is a single-mode laser prepared using periodic gratings, which is based on the effective refractive index to reflect a single wavelength. Different transverse modes have different effective refractive indices, so multimode waveguides with DFB gratings can have more than one wavelength output.

In reality, dielectric waveguides are simply first-order models of the actual waveguides of semiconductor lasers. The waveguide region of the laser is also the gain region, so the refractive index has a complex part associated with the gain (or the loss component in the absence of current).

The optical mode becomes "gain oriented" and refractive index oriented, without the need for a truly accurate optical cut-off design. The trend of this gain oriented is to favor the propagation of a single mode. In practice, the far-field and mode structure details calculated based on the refractive index distribution may differ significantly from the measured values of manufactured devices.

As a waveguide, semiconductor lasers will support both TE and TM modes, with TE being the transverse electric field and TM being the transverse magnetic field. However, in semiconductor quantum well lasers, the light emitted is mainly TE polarized. This is based on the different reflection coefficients of TE and TM modes at the cavity surface, and most lasers are inherently highly polarized.

For TE and TM modes, only certain discrete angles can become guiding modes, thereby propagating along the waveguide. Just as the light in a etalon must undergo phase length interference to support a specific wavelength, the light in a waveguide must also undergo phase length interference to allow a specific "mode" to exist, corresponding to a specific incident angle.

In the analysis of waveguides, the typical approach is to fix the wavelength and naturally choose the angle of its propagation. The reason is the same, assuming that the plane wave in the cavity originates from all points on the bottom edge. If the round-trip distance is not an integer multiple of the wavelength, the destructive interference will ultimately cause the light wave to disappear.

Source: Chip Process Technology

相关推荐
  • Panacol showcases a new optical grade adhesive on Photonics West

    Panacol will showcase new optical grade resins and adhesives for embossing and optical bonding applications at the SPIE Photonics West exhibition held in San Francisco, California, USA from January 30 to February 1, 2024.These new adhesives can be used for sensors in lightweight carpets, smart devices, and wearable devices in the automotive industry, or for generating structured light in projector...

    2023-12-12
    查看翻译
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    查看翻译
  • Improvements in LiDAR technology will help NASA scientists and explorers perform remote sensing and measurement functions

    Improvements in LiDAR technology will assist NASA scientists and explorers in remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance, and navigation.Like sonar that uses light instead of sound, LiDAR technology is increasingly helping NASA scientists and explorers with remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance...

    2023-10-26
    查看翻译
  • Polyart Launches New Generation Polyart Laser Synthetic Paper

    Polyart has launched a new generation of Polyart laser printers, designed specifically for dry toner printing technology, with a completely improved coating formula and many exciting new advantages. These include reducing nationalism, moisture resistance, and better paper touch.Say hello to the good paper jogging on the printer output. More importantly, our new formula provides better scratch resi...

    2023-11-16
    查看翻译
  • Researchers use a new frequency comb to capture photon high-speed processes

    From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or ...

    2023-11-02
    查看翻译