简体中文

A research team from the University of Chicago in the United States has demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs)

226
2023-09-21 15:52:59
查看翻译

According to reports, a research team at the University of Chicago in the United States recently demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs), which may open up new applications for mid infrared light sources.

Colloidal quantum dots are a type of semiconductor nanocrystal material that provides a promising approach for the synthesis of light sources in large quantities through wet chemical solution processing technology.

The electroluminescence of colloidal quantum dots in the visible light range has been highly efficient and cost-effective, but other wavelengths have been proven to be more challenging so far, especially in the mid infrared region.


The Philippe Guyot SiOnnest Laboratory (PGS Laboratory) at the University of Chicago specializes in the study of nanocrystalline quantum dots generated by colloidal synthesis chemistry. A colloidal quantum dot with significantly improved emission characteristics in the mid infrared band has been developed and its research results have been published in the journal Nature Photonics.

Mid infrared light source
Xingyu Shen from PGS Laboratory commented, "This cost-effective and easy-to-use method of manufacturing infrared light sources using quantum dots may be very useful. This discovery may ultimately lead to significantly cheaper mid infrared LEDs and lasers, or new technological applications.

The above work is based on the previous research on the manufacturing and performance of quantum dot devices in PGS laboratory, including efforts to improve the size distribution of nanoparticles and the development of nanocrystalline quantum dot infrared detectors, which may be comparable to commercial devices at extremely low costs.

In 2022, the research team demonstrated the first mid infrared colloidal quantum dot LED based on mercury telluride (HgTe), which has semiconductor properties and stability, facilitating infrared emission. The team pointed out at the time that this quantum dot "has the potential to break the extremely high 'cost/gram' of infrared imaging through exciting new manufacturing processes.

In the new project, the team further studied the manufacturing technology and luminescence methods of colloidal quantum dots, inspired by the established laser emission cascade method, where electrons pass through a series of different energy levels and emit a portion of energy in the form of light at each level.

According to the PGS laboratory, so far this cascade technology has never been achieved using colloidal quantum dots. The laboratory has created a black "ink" of HgTe nanocrystals, which are "coated" on a substrate and illuminated by an electric current.

According to a paper published by the team in the journal Nature Photonics, the colloidal quantum dot emits a quantum efficiency of 4.5% μ The mid infrared light of m is close to commercial epitaxial cascaded quantum well light-emitting diodes. Through further optimization, this cascading method may surpass existing methods.

We are very excited about this possibility, "Guyot SiOnnest said." This is one of the best examples of potential applications of colloidal quantum dots. More applications can be achieved through other materials, but this system architecture really works because of quantum mechanics. I think it is driving the field forward in a very interesting way.

Source: Sohu

相关推荐
  • Eurotech launches BestNet fiber rack mounting housing

    Fiber optic solution provider Eurotech announced the launch of a series of fiber optic rack mounting enclosures. The BestNet 19 inch top opening fiber optic interconnect unit is a fiber optic patch panel and cabinet, ideal for wiring, terminating, and managing fiber optic terminations, suitable for interconnect, cross connect, or splice applications in LAN environments. Modular fiber optic interco...

    2024-05-16
    查看翻译
  • Ultra wideband pulse compression grating for single cycle Ava laser implemented by Shanghai Institute of Optics and Mechanics

    Recently, Shao Jianda, a researcher of Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Jin Yunxia, a researcher team, and Li Chaoyang, a researcher of Zhangjiang Laboratory, have made breakthroughs in the field of ultra wideband pulse compression gratings.The research team has successfully developed a ultra 400 nm broadband gold grating for single cycle pulse com...

    2023-10-01
    查看翻译
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    查看翻译
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    查看翻译
  • Scientists have created a full spectrum white light laser with bright spot, smooth and flat spectrum, and large pulse energy characteristics

    Recently, the team led by Professor Li Zhiyuan from South China University of Technology has successfully developed a full spectrum white light laser, which has the characteristics of bright spot, smooth and flat spectrum, and large pulse energy. It can cover the ultraviolet visible infrared full spectrum of 300-5000nm, with a single pulse energy of 0.54mJ.The launch of such a full spectrum white ...

    2023-11-07
    查看翻译