简体中文

The Science Island team has made new progress in detecting atmospheric formaldehyde

839
2023-09-21 14:34:23
查看翻译

Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on compact spherical mirror optical multi-path cell".

Formaldehyde is an important atmospheric pollutant, mainly originating from industrial processes, chemical products, and motor vehicle emissions. In atmospheric chemistry, formaldehyde is a key intermediate product in the oxidative degradation process of volatile organic compounds (VOCs) emitted by humans and nature; In indoor environments, excessive formaldehyde levels are an important cause of cancer, especially leukemia. Therefore, real-time monitoring of atmospheric formaldehyde is of great significance for the study of atmospheric pollution chemistry and health effects.

In 2019, researcher Zhao Weixiong and assistant researcher Fang Bo from An Guang Institute team developed a TDLAS device for actual atmospheric formaldehyde measurement using a long path new spherical mirror cell combined with mid infrared tunable laser absorption spectroscopy (TDLAS) technology. They also participated in field observations in the Guangdong Hong Kong Macao Greater Bay Area and other areas.

Based on this research, a compact optical multi-pass cell with high optical path to volume ratio (optical path 50.6 m, volume~350 mL) was developed to meet the miniaturization, fast response, and high sensitivity development needs of TDLAS formaldehyde measurement devices. Its gas displacement response time is less than 1 second. Combined with fast background subtraction technology, this device can obtain 650 pptv in 1 second of integration time( α Min~2.3 × Detection limit of 10-9 cm-1). This research work laid the foundation for the team to further develop portable handheld/vehicle formaldehyde detection equipment.

This work has been supported by the National Natural Science Foundation of China, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the President's Fund of Hefei Research Institute.

Compact spherical mirror optical multi pass cell with high optical path volume ratio


Structure diagram of formaldehyde detection device


Fast background subtraction and detection limit


Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

相关推荐
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    查看翻译
  • Fiber coupled single photon source meets the requirements of quantum computing

    Due to the ability of quantum computers to crack many encryption methods used in current communication systems, the security of our current communication systems is facing threats. To address this crisis, scientists are developing quantum communication systems that utilize quantum mechanics to provide stronger security. A key component of these systems is the single photon source. In order for qua...

    10-27
    查看翻译
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    查看翻译
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    查看翻译
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    查看翻译