简体中文

The Science Island team has made new progress in detecting atmospheric formaldehyde

1156
2023-09-21 14:34:23
查看翻译

Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on compact spherical mirror optical multi-path cell".

Formaldehyde is an important atmospheric pollutant, mainly originating from industrial processes, chemical products, and motor vehicle emissions. In atmospheric chemistry, formaldehyde is a key intermediate product in the oxidative degradation process of volatile organic compounds (VOCs) emitted by humans and nature; In indoor environments, excessive formaldehyde levels are an important cause of cancer, especially leukemia. Therefore, real-time monitoring of atmospheric formaldehyde is of great significance for the study of atmospheric pollution chemistry and health effects.

In 2019, researcher Zhao Weixiong and assistant researcher Fang Bo from An Guang Institute team developed a TDLAS device for actual atmospheric formaldehyde measurement using a long path new spherical mirror cell combined with mid infrared tunable laser absorption spectroscopy (TDLAS) technology. They also participated in field observations in the Guangdong Hong Kong Macao Greater Bay Area and other areas.

Based on this research, a compact optical multi-pass cell with high optical path to volume ratio (optical path 50.6 m, volume~350 mL) was developed to meet the miniaturization, fast response, and high sensitivity development needs of TDLAS formaldehyde measurement devices. Its gas displacement response time is less than 1 second. Combined with fast background subtraction technology, this device can obtain 650 pptv in 1 second of integration time( α Min~2.3 × Detection limit of 10-9 cm-1). This research work laid the foundation for the team to further develop portable handheld/vehicle formaldehyde detection equipment.

This work has been supported by the National Natural Science Foundation of China, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the President's Fund of Hefei Research Institute.

Compact spherical mirror optical multi pass cell with high optical path volume ratio


Structure diagram of formaldehyde detection device


Fast background subtraction and detection limit


Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

相关推荐
  • Sivers Semiconductors, an optoelectronic semiconductor company, splits off its photonics business and goes public independently

    Recently, Sivers Semiconductors, a leading supplier of integrated chips and photonics modules for communication and sensing solutions, announced a significant strategic initiative:It will divest its subsidiary Sivers Photonics Ltd, which has signed a non binding letter of intent (LOI) with byNordic Acquisition Corporation and plans to achieve independent listing through a merger. This move aims ...

    2024-08-26
    查看翻译
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    查看翻译
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    查看翻译
  • Stratasys Ltd. receives a $120 million investment from Fortissimo Capital

    It is reported that Stratasys Ltd. (NASDAQ: SSYS) announced on February 2nd that it has received a $120 million investment from Fortissimo Capital, an Israeli private equity firm. This transaction directly purchases 11.65 million newly issued shares at a price of $10.30 per share, representing a premium of 10.6% compared to the company's closing price on January 31, 2025. As of press time, it has ...

    02-05
    查看翻译
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    查看翻译