简体中文

The L4 Aton laser at Eli Beamlines achieves an output power of 5 petawatts

52
2025-10-28 10:46:52
查看翻译

According to the Extreme Light Infrastructure (ELI), the L4 ATON kilojoule laser at the ELI beamline facility in Dolní Břežany near Prague, Czech Republic, has achieved peak powers exceeding 5 petawatts (10¹⁵ W).
The research institute stated: “This confirms that L4 can operate safely and reliably at this energy level, which is crucial for scaling up power and preparing for scientific experiments.”

Translated with DeepL.com (free version)

During a test program in September 2025, the flagship L4 ATON system demonstrated a laser performance of 786 J energy compressed to 154 fs, corresponding to a peak power of 5.1 PW. This currently represents the highest pulse energy achieved worldwide at the multi-petawatt power level.

 



ELI Beamlines Facility focuses on high-energy, high-repetition rate systems


“This accomplishment is about more than figures,” said Allen Weeks, Director General of ELI ERIC. “It demonstrates the maturity of ELI’s technology and establishing ELI as a world-leading facility that enables scientists to carry out groundbreaking experiments in high-intensity laser research.”

L4 ATON an international effort

The L4 ATON laser system was developed by a consortium of international partners made up of National Energetics (USA), EKSPLA (Lithuania) and the ELI Beamlines Facility team. L4 ATON combines optical parametric chirped pulse amplification (OPCPA) with a kilojoule-class, liquid-cooled glass amplifier, allowing operation at a repetition rate of one shot per minute, an order of magnitude higher than other lasers of comparable energy, says ELI.

Installed in the autumn of 2018, a series of upgrades led by ELI Beamlines’ laser and engineering teams, introduced innovations in amplifier cooling, laser diagnostics, control systems, and adaptive optics, significantly improving beam quality, stability, and reliability which have gradually built in-house expertise in the design, alignment, and operation of high-energy, high-repetition-rate laser systems.

The 18 m-long vacuum compressor system was constructed for the final femtosecond pulse compression. Working in cooperation with Lawrence Livermore National Laboratory, California, USA, new multilayer dielectric diffraction gratings were developed, which are a key innovation enabling operation at extremely high energy densities on optical components.

“This successful campaign has confirmed that we can operate safely and stably at this exceptional energy level,” said Roman Hvězda, Director of the ELI Beamlines Facility. “It is the result of years of work by our experts, who have built unique competences in the construction and operation of petawatt-class lasers.”

Future plans
Since 2021, the L4 ATON laser has been serving scientific experiments within the Plasma Physics Platform (P3). A commissioning campaign in December 2025 will integrate the system with new experimental setups, paving the way for external user experiments beginning in 2027 under the ELI User Program.

With its high stability and ability to repeat experiments at one-minute intervals, L4 ATON opens new possibilities for studies in laser-driven particle acceleration, extreme-state physics, and strong-field quantum electrodynamics, as well as for further progress in laser-driven fusion research.

The ELI team is now analyzing performance data to increase power toward 10 PW in 2026. This next step is intended to expand the facility’s experimental reach even further, solidifying ELI’s position among the leading research facilities for high-intensity laser science.

 



ELI working to increase power toward 10 PW in 2026


The development and operation of the L4 ATON laser system are supported by the Ministry of Education, Youth and Sports of the Czech Republic (MEYS) through European Structural and Investment Funds (ESIF), and by ELI ERIC Member States’ funding through long term contributions.

Source: optics.org

相关推荐
  • French laser giant's profits decline, laser radar business restructuring

    Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone b...

    2024-10-09
    查看翻译
  • Nanchang University has made progress in intelligent photoacoustic tomography imaging

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that enables precise imaging of biological tissue structures at different spatial scales. It has been widely used in various fields, including brain imaging, cancer detection, and cardiovascular disease diagnosis. However, due to limitations in data acquisition conditions, photoacoustic tomography systems typically can only...

    2024-08-13
    查看翻译
  • Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

    On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and pow...

    2023-12-15
    查看翻译
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    查看翻译
  • Progress makes laser based imaging simpler and more three-dimensional

    a. b. Schematic diagram of PACTER system calibration and imaging program. BT, beam trap; DAQ, data acquisition unit; HWP, half wave plate; PBS, polarization beam splitter; ER, traverse the relay. The difference between the two modes is highlighted by a black dashed box. c. Schematic diagram of a single component ultrasonic transducer manufactured on ER. d. The ultrasound transducer detected 1D P...

    2023-12-05
    查看翻译