简体中文

Lightmatter announces the first 16 wavelength bidirectional link on single-mode fiber

660
2025-08-22 10:15:43
查看翻译

Lightmatter, a Boston-based startup developing silicon photonics hardware aimed at AI and high-performance computing, has announced a 16-wavelength bidirectional Dense Wavelength Division Multiplexing optical link operating on one strand of standard single-mode (SM) fiber.

Powered by Lightmatter’s Passage interconnect and Guide laser technologies, this development “shatters previous limitations in fiber bandwidth density and spectral utilization and sets a new benchmark for high-performance, resilient data center interconnects,” the company stated.

 



Lightmatter’s Passage platform


The Lightmatter announcement continues, “With the rise of complex trillion-parameter Mixture of Experts models, scaling AI workloads is increasingly bottlenecked by bandwidth and radix (I/O port count) limitations in data center infrastructure.” Passage technology delivers 800 Gbps bidirectional bandwidth per SM fiber over several hundred meters.

While commercial bidirectional transmission on a single fiber has been limited mainly to two wavelengths, achieving 16 wavelengths has required multiple or specialized fibers. Lightmatter states that its achievement “addresses significant technical challenges related to managing complex wavelength-dependent propagation characteristics, power budget constraints, optical nonlinearity, and mitigating crosstalk and backscattering in a single fiber.”

How it works

The development incorporates a proprietary closed-loop digital stabilization system that actively compensates for thermal drift, ensuring continuous, low-error transmission over wide temperature fluctuations.

Architectural innovations make the Passage 3D CPO platform (pictured, above) inherently polarization-insensitive, maintaining robust performance even when the fibers are being handled or subject to mechanical stress. Standard SM fiber, while offering immense bandwidth potential, does not inherently maintain light’s polarization state, unlike specialized and more costly polarization-maintaining fiber.

This combination of unparalleled fiber bandwidth density, efficient spectral utilization, and robust performance makes Lightmatter's Passage technology foundational for the industry’s transition from electrical to optical interconnects in AI data centers. It empowers customers to accelerate development of larger and more capable AI models with more powerful, efficient, and scalable data centers.

‘Architectural leap’

Nicholas Harris, founder and CEO, commented, “Data centers are the new unit of compute in the AI era, with the next 1000X performance gain coming largely from ultra-fast photonic interconnects. Our 16-lambda bidirectional link is an architectural leap forward. Hyperscalers can achieve significantly higher bandwidth density with standard single-mode fiber, reducing both capital expenditure and operational complexity, while enabling higher radix — more connections per XPU or switch,” said Harris.

Alan Weckel, co-founder and analyst at market intelligence group 650 Group, said, “Lightmatter’s ability to dramatically increase bandwidth density on existing single-mode fiber, coupled with the technology’s robust thermal performance, is a game-changer for data center scalability and efficiency. This solves one of the most pressing challenges in AI development.”

Source: optics.org

相关推荐
  • Research progress on machine learning for defect detection and prediction in laser cladding process

    It is reported that researchers from Foshan University, the Institute of Chemical Defense of the Academy of Military Sciences, the National Defense Technology Key Laboratory of Equipment Remanufacturing Technology of the Armored Forces Academy, and Chengdu State owned Jinjiang Machinery Factory have summarized and reported the latest progress of machine learning in defect detection and prediction ...

    01-17
    查看翻译
  • SEMA 2023: Huali's Easy Level Floating Free Laser Fuel Level Transmitter

    Winning the SEMA Best Engineering New Product Award is not an easy task. Therefore, it said a lot about Huali's new non floating fuel transmitter bringing hardware home. The Easy Level fuel level sender is a brand new design that does not rely on traditional float arm settings, but uses a frikken laser beam to measure the fuel level in the tank.More precisely, Easy Level uses LiDAR technology to m...

    2023-11-03
    查看翻译
  • Progress in Research on Intervalley Scattering and Rabi Oscillation Driven by Coherent Phonons

    Two dimensional transition metal chalcogenides have multi valley structures in their energy bands, giving them electron valley degrees of freedom, making them an ideal platform for studying multi body interactions. As the main mechanism of valley depolarization, the valley scattering process of free electrons or bound excitons is crucial for exploring excited state electron phonon interactions and...

    2023-10-10
    查看翻译
  • Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

    Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project,...

    2023-09-27
    查看翻译
  • 20W High Power Fiber Optic Frequency Comb with 10 to 19 Power Outside Ring Frequency Stability

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification. However, due to the un...

    2023-10-20
    查看翻译