简体中文

Tunoptix makes breakthrough progress in meta optical platform

108
2025-07-02 10:45:16
查看翻译

Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.


Tunoptix’s ultra-compact hyperspectral imaging module.


The company stated, “The new technology unlocks entirely new applications for spectral intelligence in smart phones, wearables, robotics, and edge devices.”

Tunoptix previously enabled compact full-color imaging using its meta-optical platform and is now extending this capability to hyperspectral sensing. The module eliminates the need for bulky dispersive optics or mechanical scanning mechanisms.

“Advanced spectral imaging unlocks a largely untapped consumer market estimated at over $10 billion, alongside multi-billion-dollar markets in industrial, healthcare, and defense sectors,” said Naren Yellai, the CEO. “We have overcome long-standing barriers in size, cost, and complexity to make spectral intelligence truly scalable. Our technology enables a new class of devices that can perceive and interpret the world in ways conventional cameras cannot.”

The firm’s meta-optical imaging technology integrates nano-engineered lenses and spectral filters in a compact hardware stack. This end-to-end optics approach encodes spectral information at the point of capture and delivers it directly from hardware, eliminating the need for bulky optics or mechanical scanning. Historically, hyperspectral imaging has been confined to large, expensive lab-based or industrial systems, limiting its commercial potential.

Tunoptix said its platform disrupts this paradigm with a wafer-scale, manufacturable solution that delivers real-time snapshot capture of over 30 distinct spectral channels in the VNIR range with sub-20nm spectral resolution and effective per-channel resolution of ~720×480 pixels.

By bringing spectral imaging to mobile scale, Tunoptix says that its latest system enables new applications in the following areas:

Consumer electronics: skincare, cardiopulmonary monitoring, food quality, oral health, and material sensing on smart phones, wearables, and other devices.
Industrial Automation: Real-time defect detection and material classification in high-throughput manufacturing.
Agriculture & Food Safety: Field-deployable tools for assessing ripeness, spoilage, contamination, and crop monitoring.
Defense & Security: Situational awareness and chemical detection using lightweight systems on drones and autonomous platforms.
Scalability

Tunoptix employs a fabless manufacturing model, leveraging standard CMOS-compatible processes for high-yield, wafer-level fabrication of its meta-optical elements. The company partners with foundries and optomechanical integrators to support scalable production for high volume.

The company’s announcement added, “Future mobile designs will offer higher spatial resolution (greater than 4K), extended SWIR coverage, and application-optimized configurations for wearables, factory vision systems, and defense platforms. [We are] also actively developing extensions for optical and Raman spectroscopy to support mobile chemical and molecular analysis.”

“We are seeing strong interest across multiple verticals, including tier-one OEMs in the consumer electronics space,” said Yellai. “Our goal is to democratize spectral intelligence by making it a core capability of next-generation devices. We’re actively seeking to collaborate with OEMs and system integrators to bring our technology to market at scale.”

Source: optics.org

相关推荐
  • Targeting military laser technology! Two major enterprises plan to establish a joint venture company

    Latest news: Rheinmetall and European Missile Group Germany plan to establish a joint venture to develop shipborne laser weapons.The cooperation between the two companies in the field of military laser technology has been ongoing for several years. In 2022 and 2023, under the framework of the High Energy Marine Laser Demonstration Working Group (ARGE), the jointly developed laser was successfully ...

    01-15
    查看翻译
  • Amada launches latest precision laser welding workstation wl-300a

    Recently, Amada weld tech Inc., a Japanese supplier of welding and cutting solutions, grandly launched a new wl-300a precision laser welding workstation, which is equipped with advanced continuous wave (CW) or quasi continuous wave (QCW) fiber lasers. It has a wide range of applications, especially for metal welding and processing of selected plastic materials, especially in the aerospace field.Wl...

    2024-05-31
    查看翻译
  • Coherent's first global manufacturing center in India will focus on the development, production and service of lasers, optical networking components and systems

    Coherent, a global laser giant, has signed a tripartite cooperation agreement (MoU) with the Indian Institute of Technology Madras Research Park (IIT MRP) and Guidance Tamil Nadu Investment Promotion Centre.Coherent will establish its first global Manufacturing Centre (CoE) for laser applications at IIT Madras Research Park, which will focus on R&D, production and services for lasers, optical ...

    2023-09-07
    查看翻译
  • Luxium Solutions completes strategic acquisition of Inrad Optics, a leading optical materials company

    Recently, Luxium Solutions, a high-performance crystal material supplier, announced the successful completion of its strategic acquisition of Inrad Optics, a leading optical materials company. This milestone transaction not only greatly enriches Luxium's innovative product matrix, but also injects valuable resources, operational wisdom, and capital drive into Inrad Optics. Both parties will work t...

    2024-07-20
    查看翻译
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    查看翻译