简体中文

Significant breakthrough in intelligent spectral environment perception research at Xi'an Institute of Optics and Fine Mechanics

478
2025-03-20 17:10:53
查看翻译

Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in the field of intelligent spectral environmental perception. Relevant research results have been published in the top journal in the field of environmental science, Environmental Science&Technology (Nature Index, 5-Year IF: 11.7), and have been selected as cover papers. The first author of the paper is Liu Jiacheng, and the corresponding authors are Yu Tao and Hu Bingliang. Xi'an Institute of Optics and Fine Mechanics is the first completion unit and communication unit. This is the first time that Xi'an Institute of Optics and Fine Mechanics has published an article in this journal, marking a new breakthrough in the research of intelligent spectral environment perception in the international academic field.

Spectroscopy is an important interdisciplinary field mainly involving physics and chemistry, which studies the interaction between 
electromagnetic waves and matter through spectroscopy. Detecting the absorption spectrum of water bodies can reflect the absorption characteristics of water molecules towards specific wavelengths of light, thereby quantitatively inverting water environmental quality parameters. The complex background interference of water bodies poses great challenges to high-precision quantitative inversion. Existing research mainly relies on data-driven machine learning models for quantitative inversion of water quality parameters, which is difficult to adapt to complex surface water scenarios with wide geographical distribution.

In response to the above challenges, the research team has introduced the Transformer architecture for spectral quantitative inversion of water quality parameters for the first time, and proposed the concept of Physicochemical Informed Learning to construct a quantitative inversion model for physical and chemical driven Transformers. This method embeds prior physical and chemical information into the spectral encoding process, and combines the global feature extraction capability of the Transformer architecture to improve the accuracy of complex surface water spectral quantitative inversion. The results show that this method exhibits excellent water quality parameter inversion ability in complex surface water scenarios with wide geographical distribution, providing a new theoretical basis and technical path for the application of intelligent spectroscopy technology in the environmental field.

 



Research methodology and process


Hu Bingliang and Yu Tao's team have conducted long-term research in high-resolution hyperspectral imaging remote sensing, fine spectral detection, and quantitative analysis. This research is an important achievement made by the team in benchmarking the country's efforts to promote the construction of a "Beautiful China". It is also highly recognized by the international academic community for the achievements in the field of intelligent spectral environment perception at Xi'an Institute of Optics and Fine Mechanics. It is also an important progress made by Xi'an Institute of Optics and Fine Mechanics in focusing on spectral imaging and fine spectral detection technology. The research work has been supported by the national key research and development plan, the Chinese Academy of Sciences pilot project (Class A) and other projects.

Source: opticsky

相关推荐
  • Petrobras will use laser beams to measure wind speed and direction

    Petrobras announced last week that it plans to use laser beams to measure wind speed and direction. The idea is that these data will be used to improve the operation of the wind turbines maintained by this state-owned company in North Rio Grande do.The total investment of the 2.0 version of this device reaches R $11.3 million, known as the offshore wind assessment remote buoy.This technology can a...

    2023-10-24
    查看翻译
  • Integra Optics launches groundbreaking XGS-PON and GPON combined OLT SFP+optical transceivers

    Infinite Electronics brand and innovative operator level global supplier of fiber optic components, Integra Optics, announced the launch of its latest innovative product, the XGS-PON and GPON combination OLT SFP+BiDi optical transceiver module. This module integrates the passive optical network OLT and GPON OLT optical modules of XG (S), promoting seamless network rate deployment within the optica...

    2024-04-11
    查看翻译
  • The improvement of additive manufacturing through artificial intelligence, machine learning, and deep learning

    Additive manufacturing (AM) has made it possible to manufacture complex personalized items with minimal material waste, leading to significant changes in the manufacturing industry. However, optimizing and improving additive manufacturing processes remains challenging due to the complexity of design, material selection, and process parameters. This review explores the integration of artificial int...

    02-24
    查看翻译
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-03-19
    查看翻译
  • Upgrading 3000W fiber laser to high energy and miniaturization has become a new trend

    Recently, the discussion on "miniaturization" in the domestic laser industry has become increasingly heated. From various exhibition venues, miniaturization and lightweight have become important display directions for fiber laser manufacturers.High energy and miniaturization have become new trendsIn the past few years, high-power has undoubtedly been the main development direction in the field of ...

    2023-09-20
    查看翻译