Tiếng Việt

China University of Science and Technology proposes composite cold field 3D printing technology for liquid crystal elastomers

524
2025-02-25 14:49:16
Xem bản dịch

Recently, Associate Professor Li Mujun from the School of Engineering Sciences and the Institute of Humanoid Robotics at the University of Science and Technology of China, together with researchers such as Professor Zhang Shiwu, has made significant progress in the field of intelligent material 3D printing. The research team proposed composite cold field 3D printing technology and successfully prepared near ambient temperature responsive liquid crystal elastomers (NAT LCEs) with high orientation sequence parameters and multivariate deformation capabilities. Based on this, an intelligent wristband system with significantly improved heart rate monitoring accuracy was developed. The results were published in the journal ACS Nano under the title "3D Printing of Near Adaptive Responsive Liquid Crystal Elastomers with Enhanced Nematic Order and Pluralized Transformation".

Liquid crystal elastomers, as a new type of intelligent material, have important application value in the fields of soft robots, biomedical devices, and wearable electronics. Traditional liquid crystal elastomers face bottlenecks such as high response temperature (>70 ℃) and limited programmability in manufacturing processes, which severely restrict their practical applications. The development of a new type of liquid crystal elastomer with near ambient temperature response characteristics and precision machining has become a key scientific problem that urgently needs to be overcome in this field. In response to this issue, the research team innovatively proposed a "low-temperature nozzle+cooling platform" composite cold field collaborative control strategy, achieving multiple technological breakthroughs: 1. Precise control of liquid crystal element orientation: maintaining high ink viscosity through a 5 ℃ low-temperature printing environment, inducing highly oriented alignment of liquid crystal elements through shear force, and increasing the orientation sequence parameters by more than 30 times compared to traditional room temperature printing methods. 2. Multivariate deformation programming: achieving reversible deformation of complex structures such as saddles, cones, and English letters. 3. Biocompatible applications: The material responds to temperature and adapts to the human tolerance range, successfully developing an intelligent heart rate monitoring wristband system that can actively adhere to the skin.

 



Figure 1. Schematic diagram of the working principle of the composite cold field 3D printing system


The structure printed in this study exhibits good environmental adaptability: the disk sample spontaneously forms a saddle shape at room temperature, with an increase in curvature at 10 ℃ and a conical shape at 60 ℃. Gradient programming is achieved through dynamic temperature control, and precise curling deformation is achieved through layered temperature control programming for structures such as "USTC" letters. The research team also explored the application of this technology in the field of precision medicine. The liquid crystal elastic wristband with integrated liquid metal circuit actively adheres to the wrist under PID temperature control, significantly improving measurement accuracy and reducing noise. The performance of 1000 fatigue tests remains unchanged, promoting the development of soft robotics technology, biomedical instruments, and wearable electronic devices.

 



Figure 2. Programmable Multivariate Deformation Display and Application


Li Dongxiao, a master's student in the Department of Precision Machinery and Precision Instruments at the University of Science and Technology of China, and Sun Yuxuan, a postdoctoral fellow, are co first authors of the paper. Associate Professor Li Mujun, Professor Zhang Shiwu, and Postdoctoral Fellow Sun Yuxuan are co corresponding authors. Professor Pan Tingrui from the Suzhou Institute of Advanced Study at the University of Science and Technology of China and Professor Li Weihua from the University of Wollongong in Australia are co authors of the paper. This research has received support from the National Key Research and Development Program of the Ministry of Science and Technology, the Natural Science Foundation of Anhui Province, and the Joint Fund of "New Medicine of University of Science and Technology of China". Some experiments have received support from platforms such as the Micro Nano Research and Manufacturing Center of the University of Science and Technology of China and the Physical and Chemical Science Experimental Center of the University of Science and Technology of China.

Source: opticsky

Đề xuất liên quan
  • Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

    Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated w...

    2024-04-09
    Xem bản dịch
  • EO Technologies from South Korea enters the glass substrate processing market

    Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass sub...

    2024-06-18
    Xem bản dịch
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    Xem bản dịch
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    Xem bản dịch
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    Xem bản dịch