Tiếng Việt

Massachusetts University team achieves new breakthrough in photolithography chip

348
2024-11-06 11:16:24
Xem bản dịch

Recently, a research team from the University of Massachusetts Amherst has pioneered a new technology that uses laser irradiation on concentric superlenses on chips to generate holograms, thereby achieving precise alignment of 3D semiconductor chips.

This research result, published in the journal Nature Communications, is expected to not only reduce the production cost of 2D semiconductor chips, but also promote the feasibility of 3D photonics and electronic chips, and lay the foundation for the development of other low-cost, compact sensor technologies.

Semiconductor chips are the core of electronic devices for processing, storing, and receiving information, and their functions are determined by the specific component layout embedded in the chip. However, as the potential of 2D design approaches its limit, 3D integration technology is seen as a key path to breaking through bottlenecks.

To build a 3D chip, multiple 2D chips need to be stacked and each layer needs to be accurately aligned in the three-dimensional direction (i.e. front back, left and right, and vertical gaps corresponding to the x, y, and z axes), with an error controlled within tens of nanometers (1 millimeter equals 1 million nanometers).

Amir Arbabi, Associate Professor of Electronic and Computer Engineering at the University of Massachusetts Amherst and senior author of the paper, explained that traditional alignment methods involve observing the markings on each layer (such as corners or crosshairs) under a microscope and attempting to overlap, but this method is not suitable for 3D chip manufacturing. The first author of the paper and doctoral student Maryam Ghahremani pointed out that microscopes cannot clearly focus on two layers of markers at the same time because the interlayer gap can reach hundreds of micrometers, which may cause chip movement and misalignment during the refocusing process.

The research team simulated and measured different lateral misalignment scenarios ranging from 150 nanometers to 1 micrometer (1000 nanometers). Maryam Ghahremani also mentioned that the resolution of microscopes is limited by the diffraction limit, which is about 200 nanometers.

The new calibration technology of Amir Arbabi team does not require moving parts and can detect misalignment between two layers in a smaller range. They expected an accuracy of 100 nanometers, but in actual testing, the measurement error along the x and y axes was as low as 0.017 nanometers, and the error on the z axis was only 0.134 nanometers, far exceeding expectations. Amir Arbabi stated that this technology can detect movements equivalent to the size of an atom by observing the changes in light passing through an object. The naked eye can recognize errors of a few nanometers, while computers can read even smaller errors.

To achieve this goal, the research team embedded alignment marks composed of concentric metal lenses on semiconductor chips. When the laser passes through these marks, two interference holograms will be formed. Kahramani pointed out that these interferometric images can intuitively display whether the chip is aligned, as well as the direction and degree of misalignment.

For semiconductor tool manufacturers, chip alignment is a daunting and costly challenge, "Amir Arbabi said." Our approach solves one of these challenges. "In addition, this technology reduces costs and provides more opportunities for small startups seeking semiconductor innovation.

Amir Arbabi also mentioned that this technology can be applied to manufacture displacement sensors for measuring physical quantities such as displacement. He said, "Many physical quantities to be detected can be converted into displacement with just a laser and camera." For example, pressure sensors can be made by measuring the motion of a membrane, and any phenomenon involving motion, such as vibration, heat, acceleration, etc., can theoretically be tracked through this technology.

Summary
In current chip manufacturing, the alignment of multi-layer patterns relies on microscopic imaging technology, but due to the large distance, traditional methods are difficult to achieve the required nanometer level accuracy. The research team at the University of Massachusetts Amherst has successfully achieved sub nanometer precision alignment by introducing metasurface alignment markers, combined with lasers and cameras, greatly improving accuracy and ease of operation.

The experimental results show that this method can achieve lateral accuracy of one fifty thousandth of the laser wavelength and axial accuracy of one sixty three hundredth of the laser wavelength. This technology is expected to drive the production of a new generation of 3D integrated optical and electronic chips, paving the way for applications such as high-precision displacement sensors.

Source: OFweek

Đề xuất liên quan
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    Xem bản dịch
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    Xem bản dịch
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    Xem bản dịch
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    Xem bản dịch
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    Xem bản dịch