Tiếng Việt

New nanophotonic circuits demonstrate the potential of quantum networks

546
2024-08-14 11:21:40
Xem bản dịch

The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue of Physical Review X.

The newly developed technology utilizes laser cooling to capture atoms in integrated nanophotonic circuits. Light propagates through a tiny photon "line" (a waveguide that is 1/200 thinner than a human hair). These atoms are frozen to minus 273.15 degrees Celsius and are essentially in a static state. At such low temperatures, atoms can be captured by a pulling beam aimed at a photonic waveguide and placed at a distance much shorter than the wavelength of light (approximately 300 nanometers). Within this distance, atoms can effectively interact with photons in the photonic waveguide.

Researchers are conducting experiments
Using the most advanced nanomanufacturing instruments, the team designed a photonic waveguide into a circular structure with a diameter of approximately 30 microns, forming a so-called micro ring resonator. Light will circulate within the micro ring resonator and interact with the captured atoms.

This atomic coupled micro ring resonator is like a transistor for photons. People can use these captured atoms to control the flow of light through circuits. If atoms are in the correct state, photons can be transmitted through circuits. If the atom is in another state, photons will be completely blocked. The stronger the interaction between atoms and photons, the more effective the "gate" of passage and obstruction.

The team captured up to 70 atoms, coupling them all to photons and controlling their transmission on an integrated photonic chip, achieving a "collective" high-intensity interaction with light.

This research result can provide photon links for future distributed quantum computing based on neutral atoms. It can also serve as a new experimental platform for studying light matter interactions or ultra cold molecules.

Source: Opticsky

Đề xuất liên quan
  • Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

    The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently publ...

    2023-09-22
    Xem bản dịch
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    Xem bản dịch
  • Nokia and AT&T reach five-year agreement to accelerate fiber optic network upgrade

    Recently, Nokia announced a five-year agreement with AT&T. This agreement aims to fully support and accelerate AT&T's fiber network expansion and upgrade plans by deploying Nokia's Lightspan MF platform and Altiplano access controllers. This cooperation not only marks a deep optimization of the existing fiber optic network, but also heralds the early layout and application of the next ge...

    2024-09-12
    Xem bản dịch
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    Xem bản dịch
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    Xem bản dịch