Tiếng Việt

Laser blasting promises to solve global plastic problem

427
2024-07-16 14:30:55
Xem bản dịch

Recently, researchers announced the development of a way to use laser blasting to break down plastic and other material molecules into their smallest parts for future reuse.

This method involves placing these materials on a two-dimensional material called transition metal dichalcogenides and then irradiating them with light.

This discovery has the potential to improve the way we handle plastics that are currently difficult to decompose. The relevant research results have been published in the journal Nature Communications.

By utilizing these unique reactions, we can explore new ways to convert environmental pollutants into valuable reusable chemicals, thereby promoting the development of a more sustainable and circular economy, "said Yuebing Zheng, a professor in the Walker Department of Mechanical Engineering at the Cockrell School of Engineering at the University of Texas at Austin and one of the project leaders." This discovery is of great significance for addressing environmental challenges and advancing the field of green chemistry.

Plastic pollution has become a global environmental crisis, with millions of tons of plastic waste accumulating in landfills and oceans every year. Traditional plastic degradation methods often have high energy consumption, are harmful to the environment, and have poor results. Researchers envision using this new discovery to develop efficient plastic recycling technologies to reduce pollution.

Researchers use low-power light to break the chemical bonds of plastics and create new chemical bonds, transforming the material into luminescent carbon dots. Due to the diverse capabilities of carbon based nanomaterials, there is a high demand for these carbon dots, which may be used as storage devices in the next generation of computer equipment.

Transforming plastics that can never be degraded into materials useful for many different industries is exciting, "said Jingang Li, a postdoctoral student at the University of California, Berkeley who started this research at the University of Texas at Austin.

The specific reaction he mentioned is called "C-H activation", which selectively breaks the carbon hydrogen bonds in organic molecules and converts them into new chemical bonds. In this study, two-dimensional materials catalyzed this reaction, turning hydrogen molecules into gas and allowing carbon molecules to combine with each other to form carbon dots for storing information.

Further research and development are needed to optimize this photo driven C-H activation process and scale it up for industrial applications. However, this study represents significant progress in finding sustainable solutions for plastic waste management.

The photo driven C-H activation process demonstrated in this study can be applied to many long-chain organic compounds, including polyethylene and surfactants commonly used in nanomaterial systems.

Other co authors come from the University of Texas at Austin, Northeastern University in Japan, University of California, Berkeley, Lawrence Berkeley National Laboratory, Baylor University, and Pennsylvania State University.

This work has received funding from the National Institutes of Health, National Science Foundation, Japan Association for the Advancement of Science, Hirose Foundation, and National Natural Science Foundation of China.

Source: OFweek

Đề xuất liên quan
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Xem bản dịch
  • EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

    EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can ...

    2023-12-08
    Xem bản dịch
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    Xem bản dịch
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    Xem bản dịch
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    Xem bản dịch