Tiếng Việt

Zhejiang University has prepared ultra strong and tough 3D printing elastic materials

173
2024-07-06 10:39:46
Xem bản dịch

Professor Xie Tao and researcher Wu Jingjun from the School of Chemical Engineering and Biotechnology at Zhejiang University have designed a new type of photosensitive resin and used it to create a "super rubber band" that can stretch to over 9 times its own length and lift 10 kilograms of objects with a "body" with a diameter of 1 millimeter through 3D printing. The relevant results were recently published in the international academic journal Nature.

Comparison diagram of "Super Rubber Band" before and after stretching. The left image shows before stretching, and the right image shows after stretching. Research team provides images

Different from the layer by layer printing method, UV cured 3D printing technology is like printing photos, using ultraviolet laser to cure photosensitive resin. The product is "exposed" and "developed" from the printing material, making the printing process faster and closer to industrial application standards. However, UV cured 3D printed products are often brittle and prone to breakage, mainly used for printing models and not suitable for scenarios with high mechanical performance requirements.

"In order for 3D printing technology to adapt to more scenarios, it is necessary to change the material properties," said Fang Zizheng, the first author of the paper and a researcher at the Hangzhou International Science and Technology Innovation Center of Zhejiang University. The research team first focuses on the reactivity and flowability of the material during the printing stage to meet the requirements of material forming, and then performs toughening treatment after printing and forming.

Fang Zizheng said that the team added dynamically hindered urea bonds, polyurethane segments, and carboxyl groups to existing photosensitive resin molecules. During the stage of printing precursor materials, they are in a "latent" state. After printing, the finished product will be transferred to a 90 degree Celsius "oven" and left to stand for a while, and the molecular structure and properties of the material will quietly change.

It is understood that researchers printed a "rubber band" using this new type of resin and conducted endurance tests on it. Experiments have shown that rubber bands can be stretched to 9 times their own length and withstand a tensile force of 94 megapascals without breaking. In addition, researchers have also used this material to prepare balloons and other objects with excellent puncture resistance.

Wu Jingjun stated that the strength and toughness of this photosensitive resin material far exceed similar materials reported in existing literature and commercial products. This research progress brings dawn to the breakthrough of material limitations in 3D printing technology and its large-scale application in high-performance product manufacturing.

Source: Science and Technology Daily

Đề xuất liên quan
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Xem bản dịch
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    Xem bản dịch
  • Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

    Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using ...

    2024-05-27
    Xem bản dịch
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    Xem bản dịch
  • Researchers have made breakthrough discoveries in the field of nanophotonics

    Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.A mode-locked laser is a type of lase...

    2023-11-20
    Xem bản dịch