Tiếng Việt

New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

687
2024-07-05 14:17:54
Xem bản dịch

Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its application range. The relevant research paper was published in the latest issue of the journal Optics Letters.

High resolution 3D printing structure. Image source: Optical Express magazine

Two photon polymerization is an advanced additive manufacturing technology that relies on the precise 3D printing of materials using femtosecond lasers. Despite its outstanding performance in manufacturing high-resolution microstructures, the high cost has become a roadblock to its widespread application.

In view of this, the research team creatively combined relatively low-cost lasers that emit visible light with femtosecond lasers that emit infrared pulses, reducing femtosecond laser power by 50%. This innovative method effectively reduces the printing cost of individual parts.

The new method combines the single photon absorption of 532 nanometer nanosecond laser with the two-photon absorption method of 800 nanometer femtosecond laser. To achieve the optimal balance between two types of laser printing, the team also constructed a new mathematical model to gain a deeper understanding of the photochemical processes involved and accurately calculate the synergistic effects of two-photon and single photon excitation processes, ensuring that ideal printing results can still be achieved at lower femtosecond laser power.
The experimental results show that for 2D structures, the new method reduces the required power of femtosecond lasers by 80%; For 3D structures, it is reduced by about 50%.

The team stated that high-resolution 3D printing technology has broad application prospects, including but not limited to the manufacturing of 3D electronic devices, the development of micro robots in the biomedical field, and the construction of tissue engineering 3D structures or scaffolds.

Femtosecond laser 3D printing, in short, involves the occurrence of photochemical reactions in a very small volume to construct fine three-dimensional structures. This is a very cutting-edge technology in the field of modern additive manufacturing, but it has limitations in terms of printing speed and power budget. Now, the team has printed high-resolution structures while reducing power by half, overcoming cost barriers. The most valuable thing is that this new technology can easily integrate into existing femtosecond laser 3D printing systems, enabling faster application in various fields such as biomedical, micro robots, and micro optical devices.

Source: Yangtze River Delta Laser Alliance

Đề xuất liên quan
  • Combined spectral lasers can unlock the potential of laser plasma accelerators

    A team of researchers in Berkeley Lab's Accelerator Technology and Applied Physics (ATAP) division has developed a new technique that combines fiber lasers of different wavelengths to generate ultra-short laser pulses. The research is in the journal Optics Letters.This work could advance the development of laser plasma accelerators (LPA), which have the potential to push the frontiers of high-en...

    2023-08-04
    Xem bản dịch
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    Xem bản dịch
  • Nanjing University of Science and Technology has made new progress in the field of programmable lensless holographic cameras

    Recently, Professor Chen Qian and Professor Zuo Chao's research group from the School of Electronic Engineering and Optoelectronic Technology at Nanjing University of Science and Technology proposed a minimalist optical imaging method based on programmable masks - programmable Fresnel zone aperture lensless imaging technology. The related achievement, titled "Lensless Imaging with a Programmable F...

    04-14
    Xem bản dịch
  • HSG Laser launches new generation laser solutions

    HSG Laser unveiled its next-generation laser cutting solutions—the GH V2.0 high-power flatbed system and TS2 intelligent tube cutting machine—at its Düsseldorf showroom, marking a major milestone in its European market expansion. (Image: HSG Laser)Attended by customers and partners from across the continent, the event featured live demonstrations of both systems and highlighted HSG’s growing i...

    06-27
    Xem bản dịch
  • Han's Laser New Product Debuts at 2025 Munich Shanghai Light Expo

    New product launch of "Blue Hurricane" red blue integrated laser1. Ultra high power: The "red blue integrated" laser, with optimized optical path design and heat dissipation system, can stably output power exceeding industry standards, meeting high demand application scenarios.2. Dual high brightness: Integrating advanced wavelength modulation technology and materials science, both red and blue l...

    03-07
    Xem bản dịch