Tiếng Việt

MIT researchers have demonstrated a novel chip based resin 3D printer

886
2024-06-17 15:22:09
Xem bản dịch

Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.

The prototype processor does not have mobile components, but uses a series of small optical antennas to guide the beam of light. The beam is projected upwards into the liquid resin, which is carefully designed to quickly cure when exposed to the visible wavelength of the beam.
By integrating silicon photonics and photochemistry, interdisciplinary research teams can demonstrate a chip that can guide a beam of light to 3D print any two-dimensional design, including the letters M-I-T. The shape can be fully constructed within seconds.

Silicon Photonics and Special Resins
The Notaros group, which specializes in silicon photonics, has created an integrated optical phased array device that uses a microscale antenna on a chip to guide a beam of light. They can change the optical signals on both sides of the antenna array to control the beam of light. These systems are crucial for LiDAR sensors, which use infrared light to measure the surrounding environment. Recently, the group has shifted its focus to devices that generate and guide visible light for augmented reality applications.

Around the same time as they began brainstorming, the Page team at the University of Texas at Austin developed for the first time a specialized resin that could rapidly cure using visible light wavelengths. This is the missing part that makes chip based 3D printers a reality.
Corsetti added, "Here, we manufacture this chip based 3D printer by using visible light curing resin and visible light emitting chips, meeting between standard photochemistry and silicon photonics. You integrate the two technologies into a completely new idea.".

Chip based resin 3D printer
Their prototype consists of a photonic chip with a 160 nanometer optical antenna array. The thickness of a piece of paper is about 100000 nanometers. The entire chip is suitable for a quarter of the United States.

When driven by an off chip laser, the antenna guides the controllable visible beam into the holes of the photocured resin. The chip is located below a transparent glass slide, similar to the glass slide used in a microscope, which has a small depression that can capture resin. Researchers use electrical pulses to guide laser beams in a non mechanical manner, making the resin harden at any point of impact.

The Page team at the University of Texas at Austin works closely with the Notaros team at the Massachusetts Institute of Technology to fine tune chemical combinations and concentrations to achieve a formula with a long shelf life and solidification.
Finally, scientists have demonstrated that their prototype can 3D print any two-dimensional shape in just a few seconds.

expectation
In the long run, researchers envision a system where a photon chip is located at the bottom of a resin well and creates a 3D hologram of visible light, thereby solidifying a complete object in one step.
This type of portable 3D printer can have a wide range of applications, including allowing doctors to build customized medical device components and engineers to create rapid prototypes in the workplace.

This study received partial support from the National Science Foundation, the Defense Advanced Research Projects Agency, the Robert Welch Foundation, the MIT Rolf G. Rocher Endowment Scholarship, and the MIT Frederick and Barbara Croning Scholarship.

Source: Laser Net

Đề xuất liên quan
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    Xem bản dịch
  • Shanghai University of Technology publishes the latest Nature paper

    With the increasing demand for human data, the requirements for data storage methods are also increasing. Optical Data Storage (ODS) is a light based storage method commonly used in DVDs, which is low-cost and very durable. But ODS usually stores data in a single layer, and the amount of data that can be stored is limited. Gu Min, academician of Shanghai University of Technology, Wen Jing, and Rua...

    2024-02-26
    Xem bản dịch
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    Xem bản dịch
  • Laser chip manufacturer Shijia Photon will make a profit of 65 million yuan in 2024

    Shijia Photon disclosed its 2024 annual performance forecast on the evening of January 17th, expecting to achieve a revenue of 1.074 billion yuan in 2024, a year-on-year increase of 42.36%; Net profit attributable to the parent company was 65 million yuan, with a loss of 47.55 million yuan in the same period last year; Deducting non net profit is expected to be 48.1 million yuan, with a loss of 66...

    01-21
    Xem bản dịch
  • Surface coupled laser technology manufacturer, secured £ 2.94 million in financing

    Recently, renowned surface coupled laser technology supplier Vector Photonics announced that it has received £ 1.667 million in equity investment and £ 1.27 million in additional research funding for the continued commercialization of its unique surface coupled laser (SCL) technology. Surface coupled lasers have completely changed semiconductor laser manufacturing, improving the performance of var...

    2024-06-14
    Xem bản dịch