Tiếng Việt

Toronto research has discovered 21 new sources of organic solid-state lasers

549
2024-05-22 14:15:17
Xem bản dịch

Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new OSL materials have been tested in the past few decades.

Now, researchers from the university's acceleration alliance have accepted this challenge and used Autonomous Driving Laboratory (SDL) technology. Once established, they can synthesize and test over 1000 potential OSL materials and discover at least 21 OSL gain candidate materials within a few months.

SDL uses artificial intelligence and robot synthesis to simplify the process of identifying new materials. In this case, the new materials exhibit excellent laser properties. The Toronto team stated that so far, SDL is typically limited to one physics laboratory in one geographical location.

This work was described in a paper titled "Discovery of delocalized asynchronous closed-loop of organic laser emitters" in the journal Science. In this study, laboratories from Toronto and Vancouver, Canada, Glasgow, Scotland, Illinois, USA, and Fukuoka, Japan were all involved.

Each laboratory can contribute its professional knowledge and resources. This decentralized workflow is managed by a cloud based platform, which not only improves efficiency but also allows for rapid replication of experimental results, ultimately democratizing the discovery process and accelerating the development of next-generation laser technology.

"This paper demonstrates that closed-loop methods can be delocalized, and researchers can accelerate the discovery of materials in the early stages of commercialization from molecular states to devices," said Dr. Al á n Aspuru Guzik, Director of the Acceleration Alliance.
"The team designed an experiment from molecules to devices, with the final equipment manufactured in Japan. They were scaled up in Vancouver and then transferred to Japan for characterization," he said.

The discovery of these new materials represents a significant advancement in the field of molecular optoelectronics. It paves the way for the performance and functional enhancement of OSL devices, and sets a precedent for future delocalized discovery activities in the fields of materials science and autonomous driving laboratories.

Toptica launches FemtoFiber ultra series lasers
Laser developer Toptica has launched the FemtoFiber Ultra series, the company's "next-generation femtosecond fiber laser" designed specifically for multiphoton microscopy, two-photon lithography, and semiconductor detection.

With over 20 years of experience in developing OEM grade fiber lasers, Toptica has created a turnkey, fully integrated, and optimized laser system that provides excellent performance and reliability for the most demanding scientific and industrial applications in the biotechnology and semiconductor industries.

The FemtoFiber ultra series offers unparalleled accuracy and consistency, delivering high average power, excellent temporal and spatial beam quality, and femtosecond pulses in a compact and sturdy package.

This industrial grade optical engine is designed to withstand the harsh conditions of advanced imaging and micro/nano processing, making it an ideal choice for high-end applications. Its seamless operation and low cost of ownership make it a multifunctional solution, enabling researchers and manufacturers to explore new fields of multiphoton microscopy and semiconductor detection.

Luisa Hofmann, Product Manager for Biophotonics and Materials at Toptica, commented, "We designed these lasers to meet the ever-changing needs of our customers, providing them with powerful tools to deliver consistent results while minimizing downtime and costs, with output wavelengths of 780, 920, and 1050 nm.".

Source: Laser Net

Đề xuất liên quan
  • Seyond plans to land on the Hong Kong Stock Exchange in De SPAC mode

    Recently, TechStar Acquisition Corporation (07855. HK), a special purpose acquisition company, announced that Seyond, the successor company of the special purpose acquisition transaction, has submitted a new listing application. Seyond plans to land on the Hong Kong Stock Exchange under the De SPAC model. This means that Seyond is only one step away from going public through a backdoor listing. If...

    02-14
    Xem bản dịch
  • Optical Capture of Optical Nanoparticles: Fundamentals and Applications

    A new article published in Optoelectronic Science reviews the basic principles and applications of optical capture of optical nanoparticles. Optical nanoparticles are one of the key elements in photonics. They can not only perform optical imaging on various systems, but also serve as highly sensitive remote sensors.Recently, the success of optical tweezers in separating and manipulating individual...

    2023-11-25
    Xem bản dịch
  • Manz AG officially announces its application for bankruptcy restructuring

    Last month, Manz AG officially announced that the company is about to undergo bankruptcy restructuring. The board of directors of the company believes that due to insufficient liquidity and excessive debt, Manz AG intends to apply for bankruptcy proceedings in accordance with bankruptcy laws. The application is expected to be submitted in the next few days. Manz AG is headquartered in Reutlingen...

    01-07
    Xem bản dịch
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    Xem bản dịch
  • Laser Photonics Corporation acquires Control Micro Systems through asset purchase agreement

    Recently, Laser Photonics Corporation (LPC), a laser cleaning equipment developer listed on NASDAQ in the United States, announced that the company has signed a final agreement to acquire Control Micro Systems, Inc. (CMS) through an Asset Purchase Agreement (APA), but the financial details of the transaction have not yet been disclosed.At present, LPC's market value has shrunk by 70%, and it is de...

    2024-11-05
    Xem bản dịch