Tiếng Việt

Researchers use non classical light to achieve multi photon electron emission

643
2024-05-20 15:23:40
Xem bản dịch

Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission process is still poorly understood.

Researchers from Friedrich Alexander University (FAU) in Erlangen Nuremberg and the Max Planck Institute for Photoscience have recently begun exploring the interaction between light and matter through non classical light sources to fill this gap in the literature. Their paper published in the journal Nature Physics suggests that the photon statistics driving the light source are printed on the electron count statistics emitted by metal needle tips, and this observation may have interesting implications for the future development of optical devices.

The co-author and FAU researcher Jonas Heimerl of the paper told Phys.org, "The field of strong field physics has now been highly developed, as evidenced by the Nobel Prize in Physics in 2023." "This physical phenomenon is not limited to atoms, but also occurs on metal surfaces, such as metal needles. A similar and more diverse development is in the field of quantum optics. One aspect of this field is the use of non classical light statistics to generate light, such as bright compressed vacuum."

The main objective of Heimer and his collaborators' latest research is to understand how quantum light originating from non classical light sources interacts with matter. It is worth noting that so far, only classical light sources have been used to explore the interaction between quantum light and matter.

"Our neighbor Professor Maria Chekhova is a world leading expert in the field of bright compressed vacuum generation, a special form of non classical light," co author and FAU researcher Peter Hommelhoff told Phys Org. "Therefore, we collaborated with her and Ido Kaminer, a long-term partner at the Israel Institute of Technology, to study electron emission driven by non classical light."

Heimer, Homerhoff, and their research team at FAU collaborated closely with researcher Chekhova, who has extensive expertise in the field of quantum optics, to conduct experiments. Chekhova is known for her work in the generation of bright compressed vacuum, which requires the use of nonlinear optical processes to generate bright compressed vacuum (a type of non classical light).

"In our experiment, we used this non classical light source to trigger the photoelectric emission process of a metal needle tip with a size of only a few tens of nanometers," explained Heimer. "It can be regarded as Einstein's famous photoelectric effect, but modern light sources exhibit extreme intensity and fluctuations within each laser pulse."

For each laser pulse generated, researchers calculated the number of electrons in both classical and non classical light sources. Interestingly, they found that the number of electrons can be directly influenced by the driving light.

"Our findings may be of great interest to people, especially for electronic imaging applications such as biomolecular imaging," said Heimer
As is well known, biomolecules are highly susceptible to damage, and reducing the electron dose used for imaging these molecules can reduce the risk of such damage. Heimerl et al.'s paper. It is possible to modulate the number of electrons to meet the specific application requirements.
"However, before we can solve this problem, we must prove that we can also imprint another type of photon distribution on electrons, which is the photon distribution with reduced noise, but this may be difficult to achieve," said Homelhoff.

The discovery of this latest work may soon bring new opportunities for the study of strong field quantum optics. Meanwhile, they can serve as the foundation for new devices, including sensors and strong field optical devices that utilize the interaction between quantum light and electrons.

Source: Laser Net

Đề xuất liên quan
  • LAP launches CAD-PRO Xpert, an industrial laser projector using cutting-edge technology platforms

    LAP launched its latest version of the industrial laser projection system CAD-PRO Xpert at this year's JEC World. This innovation signifies the company's commitment to providing the most advanced laser engineering for various industries to achieve precise, efficient, and reliable laser guidance and positioning tasks, which is an important milestone.Redefining laser projection in the production pro...

    2024-03-07
    Xem bản dịch
  • Ruisheng Clyde Aerospace Company Commercializes TNO's Satellite Communication Laser Terminal

    AAC Clyde Space, a small satellite technology multinational company headquartered in Uppsala, Sweden, has obtained the right to manufacture and distribute laser satellite communication terminals using the optical technology of the Dutch research institution TNO.TNO's technology helps to transmit satellite generated data to Earth through lasers, with the potential to achieve high speed and security...

    2024-05-24
    Xem bản dịch
  • Dark Solitons Discovered in Ring Semiconductor Lasers

    Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser ph...

    2024-02-01
    Xem bản dịch
  • 2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics

    2Pi Optics has launched a new type of fisheye camera based on its so-called metasurface optics.The company plans to showcase this technology at the large-scale technology trade show CES 2024 in Las Vegas next week.This company, headquartered in Cambridge, Massachusetts, stated that it has created the world's leading high-resolution fisheye sensor based on optical superlens technology. This technol...

    2024-01-05
    Xem bản dịch
  • TRUMPF will launch a fully automatic laser drilling machine for interconnected manufacturing equipped with a 6-kilowatt fiber laser

    TRUMPF introduced its TruMatic 5000 manufacturing unit and new SheetMaster automatic loading and unloading device technology at the 2023 Blechexpo Metal Plate Processing Exhibition in Stuttgart, Germany.Users of the new system will benefit from fully automatic laser cutting, punching, and forming capabilities. The new SheetMaster device can achieve fully automated material flow within the manufact...

    2023-10-23
    Xem bản dịch