Tiếng Việt

A new type of flexible reflective mirror can improve the performance of X-ray microscopy

873
2024-05-06 16:31:46
Xem bản dịch

A research team in Japan has designed a flexible and shapable X-ray reflector, achieving significant accuracy and higher stability at the atomic level.
This new technology, developed by Satoshi Matsuyama and Takato Inoue from the Graduate School of Engineering at Nagoya University, in collaboration with the Japanese Institute of Physical and Chemical Research and JTEC Corporation, improves the performance of X-ray microscopy and other technologies that use X-ray mirrors. The relevant results were published in the journal Optica.

A new type of deformable mirror for X-ray microscopy, achieving high image resolution through wavefront correction.


X-ray microscope is an advanced imaging tool that serves as a bridge between electron microscopy and optical microscopy. It uses X-rays that provide better resolution than light and can penetrate thick samples that electrons cannot penetrate. This enables imaging of structures that are difficult to see with other microscopy techniques.

X-ray microscopes have high resolution, making them particularly important in fields such as materials science and biology, as they can observe the composition, chemical state, and structure inside samples.

Reflectors play a crucial role in X-ray microscopy. They can reflect X-ray beams and perform high-resolution imaging on complex structures. High quality images and accurate measurements are essential, especially in cutting-edge scientific fields such as catalyst and battery detection.
However, due to the small wavelength of X-rays, they are easily distorted due to small manufacturing defects and environmental influences. This will generate wavefront aberrations, thereby limiting the resolution of the image. Matsuyama and his collaborators solved this problem by creating a deformable mirror and adjusting its shape based on the detected X-ray wavefront.

The X-ray microscopy images showed higher resolution after using the new deformable mirror. The left and right images are the images before and after shape correction, respectively.

In order to optimize their mirrors, researchers studied piezoelectric materials. These materials are very useful because they can deform or change shape when an electric field is applied. In this way, even if there is a slight deviation in the detected radio waves, the material can reshape its own shape and respond accordingly.

After considering various compounds, researchers chose lithium niobate single crystal as a shape changing mirror. Single crystal lithium niobate is very useful in X-ray technology because it can expand and contract under the action of an electric field, and form a high reflective surface through polishing. This allows it to serve as both an actuator and a reflective surface, simplifying the equipment.

Matsuyama said, "Traditional X-ray deformable mirrors are made by bonding glass substrates and PZT plates. However, connecting different materials together is not ideal and can lead to instability. To overcome this problem, we used single crystal piezoelectric materials, which are made of uniform materials and do not require bonding, thus having extremely high stability. Due to their simple structure, the mirror can freely deform, achieving atomic level accuracy. In addition, this accuracy can be maintained for 7 hours, confirming its extremely high stability.".

When testing their new equipment, Songshan's team found that their X-ray microscope exceeded expectations. Its high resolution makes it particularly suitable for observing microscopic objects, such as semiconductor device components.

Compared to the spatial resolution of traditional X-ray microscopes (usually 100 nanometers), their technology has the potential to develop microscopes with a resolution about 10 times higher (10 nanometers) because aberration correction makes them closer to the ideal resolution.
Matsuyama said, "This achievement will drive the development of high-resolution X-ray microscopes, which have always been limited by manufacturing process accuracy. These mirrors can also be applied to other X-ray equipment, such as lithography equipment, telescopes, CT in medical diagnosis, and X-ray nanobeam formation."

Related links: https://phys.org/news/2024-05-mirror-flexibly-ray-microscopes.html

Source: Physicist Organization Network

Đề xuất liên quan
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Xem bản dịch
  • Tunoptix makes breakthrough progress in meta optical platform

    Tunoptix, a developer of computational meta-optics, based in Seattle, WA, has made what it calls “a breakthrough in mobile-scale spectral imaging”. The company’s latest meta-optical platform captures high-fidelity spectral signatures across the visible-to-NIR spectrum in a compact form factor smaller than 1 cm3, consuming less than 500 mW, and operating at real-time frame rates.Tunoptix’s ultra-c...

    07-02
    Xem bản dịch
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    Xem bản dịch
  • The semiconductor laser market is expected to reach $5.3 billion by 2029

    Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 b...

    2024-12-03
    Xem bản dịch
  • Shandong Zhancheng Intelligent Manufacturing Laser Cutting Equipment is Popular Overseas

    The high-end laser cutting machine developed and produced by Dongying Lijin Zhancheng Laser Intelligent Manufacturing Company has become popular in overseas markets this spring. This equipment can not only use laser to quickly cut steel, but also freely swing on steel, "showing" beautiful pictures. The laser travels like a paintbrush flying, and the hard steel plate has been hollowed out into be...

    03-21
    Xem bản dịch