- Không có dữ liệu
Tiếng Việt
- English
- 简体中文
- 繁体中文
- Français
- Русский
- Italiano
- 日本語
- 한국어
- Português
- Deutsch
- Español
- Türkçe
- Ελληνικά
- Nederlands
- Tiếng Việt
- Polski
Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...
The team from the School of Information and Communication Engineering at the University of Electronic Science and Technology of China has proposed for the first time a laser radar instrument based on the dispersion Fourier transform method, forming a new demodulation mechanism. This instrument breaks through the cross limitations of measurement speed, accuracy, and distance, and has unique advanta...
TDK Corporation (TSE: 6762) announced the introduction of the new NTCWS series of NTC thermistors with gold wire bonding. These bonding NTC thermistors can be installed in packages via gold wire bonding to enable high precision temperature detection of laser diodes (LD) for optical communication. The series will begin mass production in September 2023.The use of LD devices in optical communication...
Recently, Teledyne Technologies announced that it has reached an agreement to acquire a portion of Excelitas Technologies' aerospace and defense electronics business for $710 million in cash.This acquisition includes the optical systems business under the Qioptiq brand headquartered in North Wales, UK, as well as the Advanced Electronic Systems (AES) business headquartered in the United States.It ...
Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...