Tiếng Việt

Quantum droplets reveal a new field of macroscopic complexity

516
2024-03-28 14:17:31
Xem bản dịch

Scientists have advanced this field by stabilizing exciton polaritons in semiconductor photonic gratings, achieving long-lived and optically configurable quantum fluids suitable for complex system simulations.

Researchers from Leicester CNR Nanotec and the School of Physics at the University of Warsaw used a new generation of semiconductor photonic gratings to optically customize the composite of quantum light droplets, which combine to form macroscopic coherent states. This study supports a new approach that uses optics to simulate and explore the interactions between artificial atoms in a highly reconfigurable manner. The research results have been published in the renowned journal Nature Physics.

Researchers often use condensed matter systems and photon technology to create microscale platforms that can simulate the complex dynamics of many interacting quantum particles in a more accessible environment. Some examples include optical lattices, superconducting arrays, and ultracold atomic ensembles in photonic crystals and waveguides. In 2006, a new platform emerged that showcased macroscopic coherent quantum fluids of excitons polaritons, exploring multi-body quantum phenomena through optical techniques.

When a semiconductor is placed between two mirrors, the internal electron excitation is strongly influenced by photons trapped between the mirrors. The new boson quantum particles generated from this are called exciton polaritons, which can undergo phase transitions under appropriate conditions, become non-equilibrium boson Einstein condensates, and form macroscopic quantum fluids or light droplets. The quantum fluid of polaritons has many significant properties, one of which is that they are optically configurable and readable, making it easy to measure polariton dynamics. That's why they are so advantageous for simulating multibody physics.

Polarized polariton condensate must be supplemented with particles using an external laser continuous optical pump, otherwise the condensate will dissipate within picoseconds. However, due to the repulsive force between particles, the greater the pumping force of the condensate, the more energy it has, causing particles to escape the condensate and subsequently decay spatial correlation. This is a fundamental issue for optical programmable polariton simulators. Scientists need to come up with a method to make condensate more stable and long-lasting, while still being optically pumped.

Scientists from Leicester CNR Nanotec and the School of Physics at the University of Warsaw have achieved this goal using a new generation of semiconductor photonic gratings. In their paper titled "Reconfigurable Quantum Fluid Molecules in Bound States of Continuum" published in Natural Physics, they injected new properties into polaritons using the sub wavelength properties of photon gratings. Firstly, polaritons can be driven to condense into an ultra long lifetime state called a bound state in a continuum. The charm of BIC lies in the fact that due to the mandatory protection of symmetry from the external continuum of photon modes, they are mostly non radiative. Secondly, due to the dispersion relationship from the grating, the polariton gains a negative effective mass. This means that the polarized polaritons of the pump cannot escape so easily through normal decay channels anymore. Now, researchers have polarized polariton fluids, which have a very long lifespan and can be safely restricted using only optical technology.

These mechanisms, combined together, enable Antonio Gianfrate and Danielle Sanvitto of Lecce CNR Nanotec to optically pump multiple polariton droplets, which can interact and hybridize into macroscopic complexes. They can use this new form of artificial atoms to customize and reversibly configure molecular arrangements and chains: condensation of negative mass BIC polaritons. The BIC characteristic provides a longer lifespan for polaritons, while the negative mass characteristic leads to their optical capture. These findings are supported by the BIC Dirac polariton theory developed between the University of Warsaw, the University of Siegen in Germany, and the University of Lyon in France.

The ultimate advantage of this platform is that artificial quantum composites can be fully optically programmed, but because they are not affected by continuum, they retain a very high lifespan. This may lead to a new adventure in optically programmable large-scale quantum fluids, defined by unprecedented coherent scales and stability, for structured nonlinear lasers and complex system simulations based on polaritons.

"In this artificially polarized Dirac system, there are still several interesting exploration methods. For example, the coupling mechanism between polariton droplets along the grating direction and perpendicular to the grating direction is very different. Along the waveguide, polaritons are actually negative mass particles tightly bound to the pump point. They are perpendicular to the waveguide and undergo ballistic transmission as positive mass particles. The combination of these two mechanisms opens a new window for studying the emergence behavior of synchronization and mode formation in structured polariton quantum fluids," said Helgi Sigur of the School of Physics at the University of Warsaw ð SSON concluded.

Source: Laser Net

Đề xuất liên quan
  • Scientists have made breakthrough progress in using laser to cool sound waves

    A group of researchers from the Max Planck Institute of Optoelectronics has made a significant breakthrough in using laser cooling to travel sound waves. This development brings us one step closer to the quantum ground state of sound in waveguides, which is of great significance for quantum communication systems and future quantum technology.By using laser cooling, scientists can significantly red...

    2024-01-22
    Xem bản dịch
  • Using Topological Photon Chips to Uncover the Secrets of Open Systems

    Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the su...

    2024-02-02
    Xem bản dịch
  • Particles have "fuzzy memory" in solid-state batteries

    When you shoot a laser at a solid-state battery, you find that the particles inside are not thrown into the chaos. This surprised a team of researchers from the United States and the United Kingdom.The team discovered the persistence of memory in ions that help move electricity around solid-state batteries.This discovery has improved the understanding of solid-state batteries, which are candidate...

    2024-02-18
    Xem bản dịch
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    Xem bản dịch
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Xem bản dịch