Tiếng Việt

Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

506
2024-03-08 14:11:01
Xem bản dịch

Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.

The research findings are published in Optics Letters.
Aircraft engines are developing towards high-temperature and high-pressure combustion to improve thermodynamic efficiency. Pressure is an important parameter for monitoring engine performance and diagnosing engine faults. However, traditional contact pressure sensors not only interfere with the combustion flow, but are also limited by the temperature tolerance of the sensor material.

In this study, researchers developed a non-contact pressure sensing method for high-temperature environments and demonstrated it at temperatures up to 1300 K. The focus of this study is on how to address the impact of molecular concentration on gas pressure measurement in high-temperature environments.

Scientists have found that the collision broadening of two absorption lines coupled can eliminate concentration variables. With this discovery, scientists can achieve concentration independent pressure measurements. Considering that the main product of combustion systems fueled by hydrocarbons is H2O, they validated this finding with two H-absorption lines, where H2O is located near 1343 nm and 1392 nm on a carefully designed heating absorption cell. The time resolution and uncertainty of pressure measurement are respectively 50 μ Realize at s and 3%.

Professor Liu Kun said, "Our findings provide valuable tools for pressure sensing in high-temperature environments and can promote the development of multi parameter diagnosis in laser based combustion science.".

Source: Laser Net

Đề xuất liên quan
  • 43 seconds! Completion of laser welding of a new energy vehicle body

    March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of h...

    03-11
    Xem bản dịch
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Xem bản dịch
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    Xem bản dịch
  • Zhuoli Laser South Korea Branch Officially Opened

    In recent years, the performance of Chinese laser technology enterprises in the international market has become increasingly eye-catching. On September 20th, under the joint witness of nearly a hundred customer representatives from various industries in South Korea, the opening ceremony of Zhuolai Laser South Korea Branch was officially held.The branch is located in the Gyeonggi do region of south...

    2023-09-23
    Xem bản dịch
  • Ultrafast laser technology continues to reach new heights

    Ultra short pulse lasers, such as femtosecond lasers, are increasingly becoming easy-to-use plug and play devices suitable for a wide range of industrial and biomedical applications. Fifteen years ago, the volume of these lasers was still very large, requiring daily cleaning of optical components, regular maintenance of cooling water, and continuous optimization of laser parameters. Nowada...

    2023-11-06
    Xem bản dịch