Tiếng Việt

Developing nanocavities for enhancing nanoscale lasers and LEDs

888
2024-01-29 13:42:27
Xem bản dịch

As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.

In the journal Optical Materials Letters, researchers have demonstrated that the modal volume of their new nanocavity is one order of magnitude lower than previously shown in III-V group materials. III-V group semiconductors have unique characteristics that make them suitable for optoelectronic devices.

The significant spatial limitation of light demonstrated in this work improves the interaction between light and matter, allowing for greater LED power, lower laser threshold, and higher single photon efficiency.

The study was conducted by scientists from the Nanophotonics Center at the Technical University of Denmark. Their goal is to study a new type of dielectric optical cavity that allows for deep subwavelength optical confinement by using the concept they call extreme dielectric confinement.

EDC cavities may generate extremely efficient computers, where deep subwavelength lasers and photodetectors are integrated into transistors to reduce energy consumption by improving the interaction between light and matter.

In current research, the EDC cavity in III-V semiconductor indium phosphide was initially constructed by researchers using an orderly mathematical technique that relaxed geometric constraints and optimized the topology. Then, they used dry etching and electron beam lithography to construct the structure.

"The characteristic size of EDC nanocavities is as small as a few nanometers, which is crucial for achieving extreme light concentrations, but they also have significant sensitivity to manufacturing changes. We attribute the successful implementation of cavities to the improved accuracy of the InP manufacturing platform, which is based on electron beam lithography followed by dry etching," Xiong added.

The second stage of topology optimization is based on the relatively small dielectric feature size achieved by researchers through improved manufacturing methods. After the last optimization cycle, the mode volume of the nanocavity is only 0.26 ³, Among them λ  Is the wavelength of light, and n is its refractive index.

This achievement is four times smaller than the diffraction limit volume of the commonly referred to nanocavity, which is equivalent to a lightbox with a side length of half the wavelength.

Researchers have pointed out that although silicon has recently produced cavities with similar characteristics, III-V group semiconductors have direct band to band transitions, while silicon does not. These transformations are necessary for utilizing Purcell enhancement provided by nanocavities.

Xiong concluded, "Prior to our work, it was uncertain whether III-V group semiconductors would achieve similar results as they did not benefit from advanced manufacturing technologies developed for the silicon electronics industry.".

Currently, researchers are attempting to further reduce pattern volume by improving manufacturing accuracy. In order to manufacture useful nanolasers or nanoLEDs, they also hope to use EDC cavities.

Source: Laser Net

Đề xuất liên quan
  • The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

    In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especiall...

    2024-02-21
    Xem bản dịch
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    Xem bản dịch
  • Advanced optical giant Schott announces completion of Malaysia factory

    Recently, German optical giant SCHOTT is pleased to announce that its advanced production plant located in Gulim, Kedah, Malaysia has been successfully completed. This milestone event was celebrated with the joint witness of employees, clients, and representatives from the Malaysian Investment Development Authority (MIDA).The completion of the new factory marks a significant increase in Schott's...

    2024-10-16
    Xem bản dịch
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    Xem bản dịch
  • SuperLight Launches "First" Portable Broadband Laser

    Supercontinuum spectrum laser developer SuperLight Photonics has launched the so-called "first revolutionary portable broadband laser" - SLP-1000. Its wide spectral output provides a light source for industrial and medical imaging applications as well as spectroscopy.Supercontinuum spectrum lasers, also known as broadband lasers, provide high bandwidth while maintaining high coherence and low nois...

    2023-11-02
    Xem bản dịch