Tiếng Việt

Patterned waveguide enhanced signal amplification within perovskite nanosheets

553
2024-01-10 14:03:43
Xem bản dịch

Researchers at Busan National University, led by Kwangseuk Kyhm, Professor of Ultra Fast Quantum Optoelectronics from the Department of Optics and Mechatronics, are enhancing signal amplification inside cesium bromide lead perovskite nanosheets through patterned waveguides.

Perovskite is a highly attractive material in solar cell applications, but its nanostructure is now being explored as a new laser medium.

"Light amplification within perovskite quantum dots has been reported, but due to the Auger process, there are inherent limits. It essentially shortens the decay time of population reversal - in this state, most of the system is in a higher excited energy state rather than a lower non excited energy state," said Kyhm. Moreover, due to the two-dimensional structure of perovskite nanosheets arranged in a sheet-like configuration at the nanoscale, the Auger process is relatively suppressed compared to quantum dots.

Efficient laser media require significant gain, so Kyhm's team turned to patterned waveguides to enhance signal amplification of perovskite nanosheets.

In order to enhance signal amplification, researchers chemically synthesized high-quality square CsPbBr3 nanosheets with an average lateral size of~140 ± 40nm. Then, the periodically patterned polyurethane acrylate substrate is filled with small perovskite nanosheets through a deposition process to form nanosheet stripes, and effective light amplification is carried out along these stripes.

"We used a new 'gain profile' gain analysis to overcome the limitations of early gain analysis," said Kyhm. Although the old method provided a gain spectrum, it was unable to analyze the gain saturation of long strip lengths. As the gain contour line shows the variation of gain with spectral energy and strip length, analyzing local gain changes along spectral energy and strip length is very convenient.

It has been proven that the team's patterned waveguide has great potential in efficient and controllable signal amplification. "The optical confinement effect of waveguides is excellent," said Kyhm. "The gain coefficient increases and the thermal stability is also improved."

Researchers say that the improvement in optical confinement and heat dissipation can be attributed to 2D centroid confinement excitons and localized states generated by uneven nanosheet thickness and defect states.

This progress will enable the development of more reliable and versatile devices based on perovskite nanosheets, such as lasers, sensors, and solar cells. In addition, it may also be used for information security, neuromorphic computing, and visible light communication. Of course, compared to traditional silicon-based solar cells, enhanced amplification and higher efficiency can improve the performance of perovskite solar cells.

When strong light is needed at the nanoscale, perovskite nanosheets can be combined with other nanostructures, allowing amplified light to act as optical probes. However, introducing perovskite nanosheets into consumer products such as smartphones and lighting will require overcoming stability, scalability, and toxicity issues.

"Perovskite quantum dots have been studied for use in lasers, but this zero dimensional structure has fundamental limitations," said Kyhm. Our work indicates that the 2D structure of perovskite nanosheets can be another solution.
What is the next step? "The basic physical principle of light amplification in perovskite nanosheets still needs to be verified," said Kyhm.

Source: Laser Net

Đề xuất liên quan
  • Significant progress has been made in the manufacturing and measurement of EUV lithography light source collection mirrors

    Summary:To filter out infrared light from the driving light source in the extreme ultraviolet lithography (EUVL) light source system, a rectangular grating structure needs to be fabricated on the surface of the collection mirror. However, the collection mirror grating usually undergoes deformation during the manufacturing process, resulting in a decrease in filtering efficiency. The process errors...

    04-02
    Xem bản dịch
  • Outlook - Future of miniaturized lasers

    The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks ...

    2023-12-19
    Xem bản dịch
  • Shanghai Optics and Machinery Institute has made new progress in the research of high repetition frequency and high energy medium wave infrared lasers

    Recently, the research team of Aerospace Laser Technology and System Department of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, based on 2.1 μ M Ho: YAG main oscillator amplifier pumped ZGP crystal, achieving high energy 3-5 at kHz repetition frequency μ The output of M medium wave infrared laser and further research on beam quality improvement technology for high-...

    2024-05-22
    Xem bản dịch
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    Xem bản dịch
  • Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

    Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect...

    2023-12-22
    Xem bản dịch