Tiếng Việt

Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

245
2023-08-11 14:28:54
Xem bản dịch
It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine with a variety of deformation modes. The results were published in Nature Communications.
 
In recent years, femtosecond laser two-photon polymerization, as a true 3D processing method with nanometer precision, has been widely used to fabricate various functional microstructures. These microstructures show broad application prospects in the fields of micro-nano optics, microsensors and micromachine systems. However, how to use femtosecond laser to realize composite multi-material processing and further build micro-nano machinery with multi-mode is still a great challenge.
 
According to the researchers, the femtosecond laser two-in-one processing strategy includes the construction of hydrogel joints using asymmetric two-photon polymerization and the deposition of silver nanoparticles by laser reduction in local areas of joints. Among them, asymmetric photopolymerization technology can produce anisotropy in the cross-linking density of the local region of the hydrogel micro-joint, and finally make the bending deformation controllable in direction and Angle. In situ laser reduction deposition can accurately process silver nanoparticles on hydrogel joints. These silver nanoparticles have a strong photothermal conversion effect, which makes the mode switching of multi-joint micromachines exhibit excellent characteristics of ultra-short response time and ultra-low drive power. 
 
As a typical example, eight micro-joints are integrated into a humanoid micromachine. Spatial light modulation technology is then used to achieve a multi-focus beam in 3D space, which in turn precisely stimulates each micro-joint. The cooperative deformation between multiple joints enables the humanoid micromanipulator to complete multiple reconfigurable deformation modes. Finally, the "dancing microrobot" was realized at the micron scale. As a proof of concept, by designing the distribution and deformation direction of the micro-joints, the double-jointed micro-robotic arm can collect multiple micro-particles in the same and different directions.
 
According to the researchers, the femtosecond laser two-in-one machining strategy can construct deformable micro-joints in various local areas of three-dimensional microstructures, and achieve a variety of reconfigurable deformation modes. In the future, micromanipulators with multiple deformation modes will show broad application prospects in micro-cargo collection, microfluidic manipulation and cell manipulation.
 
Source: Science and Technology Daily
Đề xuất liên quan
  • Researchers use desktop laser systems to generate ultrafast electrons

    In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.Traditionally, laser based particle accelerators require expensive laser...

    2024-03-14
    Xem bản dịch
  • NASA will demonstrate laser communications on the space station to improve space communications capabilities

    Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023.ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together comp...

    2023-09-04
    Xem bản dịch
  • Siemens will provide Rolls Royce with aerospace additive manufacturing components

    Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.Rolls Royce and 3D Printing TechnologyRoll...

    2024-12-13
    Xem bản dịch
  • Dark Solitons Discovered in Ring Semiconductor Lasers

    Dark solitons - the extinction region in a bright background - spontaneously form in a ring semiconductor laser. Observations conducted by an international research group may lead to improvements in molecular spectroscopy and integrated optoelectronics.Frequency comb - a pulse laser that outputs light at equidistant frequencies - is one of the most important achievements in the history of laser ph...

    2024-02-01
    Xem bản dịch
  • HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

    New Product for Wafer Testing Probe Card Manufacturing Equipment Project This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. A...

    03-07
    Xem bản dịch