Tiếng Việt

Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

899
2023-10-16 11:28:42
Xem bản dịch

Research background
In transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.

The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as incomplete deicing effect, environmental pollution, and reduced skin life; However, the common pneumatic and thermal active deicing and anti icing strategies on aircraft face problems such as inaccurate control and increased energy consumption. Although the new electric thermal active deicing and anti icing system has advantages such as high efficiency, good reliability, and easy control, the drawbacks of high electrical energy consumption have always limited its development. Currently, the industry urgently needs stable, efficient, and reliable new deicing and anti icing technologies.

Research Highlights 
This article focuses on the development bottleneck of high energy consumption in electric active deicing and anti icing, combined with the cutting-edge anti icing technology of hydrophobic materials in the current industry. With the help of Laser Induced Graphene (LIG) technology, which can simultaneously achieve graphene generation and precision patterning design, the common 10.6 μ By directly irradiating polyimide film (PI) with m CO2 laser and adjusting the scanning speed of the laser (50-125 mm/s), a micron scale grooved graphene surface with both hydrophobicity/superhydrophobicity and electrothermal function was successfully prepared under atmospheric pressure, expanding the preparation methods of new deicing and anti icing devices.

The basic characterization and performance testing of hydrophobic graphene surfaces revealed for the first time a significant linear negative correlation between the width of the grooves and scanning speed, which is of great significance for precise micro adjustment in laser manufacturing.

Low temperature icing tests and stability tests have shown that graphene surfaces have the potential to be reused for long-term hydrophobic and delayed icing applications.

Joule thermal performance tests have shown that graphene surfaces can achieve an electric heating effect of 45.5 ℃ -151.3 ℃ under low DC voltage supply (3 V-7 V), and can achieve surface defrosting and deicing functions (such as defrosting within 5 seconds and deicing within 90 seconds under 5V power supply) in an environment of -23 ℃.

The above research content and results demonstrate that laser induced graphene technology can efficiently and quickly convert polymer surfaces with hydrophilic wetting properties into micron scale hydrophobic graphene surfaces with hydrophobic wetting properties, providing a new approach and preparation method for preparing multifunctional deicing and anti icing surfaces with both hydrophobic and electrothermal functions.

The corresponding results were published in the Coatings journal under the title of "Fabric of Micron Structured Headable Graphene Hydrophobic Surfaces for Decking and Anti Icing by Laser Direct Writing". The first author of the article was Li Shichen, a 2021 master's student at the School of Avionics and Electrical Engineering, China Civil Aviation University, The co corresponding authors are Associate Professor Zhong Mian from the School of Avionics and Electrical Engineering, China Civil Aviation Flight Academy, and Professor He Qiang from the School of Civil Aviation Safety Engineering.

Source: Sohu


Đề xuất liên quan
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Xem bản dịch
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    Xem bản dịch
  • Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

    Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.Since the 1960s, lasers have ...

    2024-06-13
    Xem bản dịch
  • New Meltio robot unit provides large-scale line laser DED

    Meltio is an expert in the field of cost-effective linear laser metal deposition additive manufacturing technology (directed energy deposition, DED) and has launched the new Meltio Robot Cell, a turnkey metal additive manufacturing solution equipped with industrial robotic arms and the recently launched slicing software Meltio Space.The new hardware aligns with the vision of this Spanish company t...

    2023-09-22
    Xem bản dịch
  • Dr. Torsten Derr will be appointed as the CEO of SCHOTT Group on January 1, 2025

    November 25, 2024, Mainz, GermanyStarting from January 1, 2025, Dr. Torsten Derr will take over as the CEO of SCHOTT Group.The new CEO of SCHOTT Group previously served as the CEO of SGL Carbon SE.Starting from January 1, 2025, Dr. Torsten Derr will officially assume the position of CEO of SCHOTT Group. SCHOTT Group announced in October 2024 that Dr. Torsten Derr will succeed Dr. Frank Heinrich, w...

    2024-11-27
    Xem bản dịch