Tiếng Việt

Defects and solutions that are prone to occur when laser welding square shell battery explosion-proof valves for power batteries

387
2023-09-15 14:27:20
Xem bản dịch

For example, the commonly used square shell battery cells for power batteries include laser welding of cover explosion-proof valves, laser welding of pole columns, and laser welding of cover plates and shells. During the process of laser welding of aluminum alloy, it is easy to generate unqualified phenomena such as explosion points, pores, welding cracks, excessive depth and width of fusion. 

Therefore, it is necessary to define the impact of unqualified items, analyze the consequences (degree of harm) of the impact, understand the mechanism of laser welding unqualified, and take effective measures to improve the quality and consistency of laser welding in the mass production stage, improve the output of the production line, and reduce welding unqualified, Reduce the cost of waste materials.

Common failures in sealing welding of battery explosion-proof valves
Explosion proof valve is a circular thin sheet of pure aluminum (1060 or 3003) with a thickness between 0.08 and 0.1 mm. When using infrared fiber laser welding, due to the high reflectivity of solid aluminum material towards infrared laser and its thin material, if the welding process is not appropriate, the explosion-proof valve is prone to overheating, perforation or explosion during the laser welding process, causing it to lose its pressure relief and explosion-proof function.

Potential failure 1: Over burning/melting through
Reason: When using infrared laser welding, due to the high reflectivity of the solid aluminum alloy surface to infrared laser, higher laser power is often used. However, the thickness of the explosion-proof valve from 0.08 to 0.1 mm is too small, making it easy to melt through.
Solution suggestion: Select appropriate welding process parameters to achieve a steep increase and slow decrease in laser power and control heat input. Adopting a waveform with a pre peak and exponential attenuation can improve the absorption rate of aluminum material to laser, while the subsequent exponential attenuation wave can prevent perforation caused by high power density.

Potential Failure 2: Burst Hole
Cause: Gas escape from the molten pool during laser welding.
Source of gas:
1. The power battery cover plate and explosion-proof valve are thin stamping parts that are prone to residual lubricating oil and cleaning fluid after processing. Under the action of high-power density laser, these liquids are easily vaporized and float up to the surface of the molten pool, causing a large amount of splashing and leaving pits on the surface of the weld, forming explosive holes.

2. The width to thickness ratio of explosion-proof valves can generally reach around 30, and during welding, it is easy to cause thermal deformation and warping due to heating, resulting in a large amount of air in the assembly gap between the explosion-proof valve and the top cover. During welding, these residual air expands and sprays out the molten pool, forming explosive holes.

Suggested solution: 
1. Thoroughly clean the cover plate and explosion-proof valve before welding; 
2) Optimize the welding process by using pre spot welding and seam welding, and prevent warping and deformation through spot welding fixation to reduce blast hole defects.

In the laser welding of power square shell batteries, welding process technicians will select appropriate laser and welding process parameters based on the customer's battery material, shape, thickness, tensile requirements, etc., including welding speed, waveform, peak value, welding head tilt angle, etc. to set reasonable welding process parameters to ensure that the final welding effect meets the requirements of the power battery manufacturer.

Source: Shangtuo Laser

Đề xuất liên quan
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    Xem bản dịch
  • A German research team has developed a new type of perovskite stacked battery

    According to relevant media reports, a research team from the Helmholtz Center in Berlin, Germany, and Humboldt University has jointly developed a new type of perovskite stacked battery. This battery has broken the world record for similar batteries with a photoelectric conversion efficiency of 24.6%. In the solar cell family, in addition to silicon-based solar cells, there are also thin-film so...

    02-08
    Xem bản dịch
  • Coherent CEO Resigns in Restructuring

    Recently, laser giant Coherent (COHR) released an announcement.Coherent Corporation announced that President Walter R. Bashaw II will resign on September 6, 2024, due to a company restructuring that resulted in the cancellation of his position.His resignation is classified as a 'Good Reason' termination, which ensures that he will receive full severance compensation in accordance with existing com...

    2024-08-20
    Xem bản dịch
  • Aerotech launches new micro hexapod sports platform

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the HexGen HEX150-125HL miniature hexapod motion platform, a six degree of freedom (DOF) precision positioning system. This compact and cost-effective hexapod sports platform has a base diameter of 150 millimeters and a nominal height of 125 millimeters. It can achieve a minimum incremental movement of up...

    01-14
    Xem bản dịch
  • More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

    μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.It is understood that ...

    2023-11-01
    Xem bản dịch