Tiếng Việt

The L4 Aton laser at Eli Beamlines achieves an output power of 5 petawatts

50
2025-10-28 10:46:52
Xem bản dịch

According to the Extreme Light Infrastructure (ELI), the L4 ATON kilojoule laser at the ELI beamline facility in Dolní Břežany near Prague, Czech Republic, has achieved peak powers exceeding 5 petawatts (10¹⁵ W).
The research institute stated: “This confirms that L4 can operate safely and reliably at this energy level, which is crucial for scaling up power and preparing for scientific experiments.”

Translated with DeepL.com (free version)

During a test program in September 2025, the flagship L4 ATON system demonstrated a laser performance of 786 J energy compressed to 154 fs, corresponding to a peak power of 5.1 PW. This currently represents the highest pulse energy achieved worldwide at the multi-petawatt power level.

 



ELI Beamlines Facility focuses on high-energy, high-repetition rate systems


“This accomplishment is about more than figures,” said Allen Weeks, Director General of ELI ERIC. “It demonstrates the maturity of ELI’s technology and establishing ELI as a world-leading facility that enables scientists to carry out groundbreaking experiments in high-intensity laser research.”

L4 ATON an international effort

The L4 ATON laser system was developed by a consortium of international partners made up of National Energetics (USA), EKSPLA (Lithuania) and the ELI Beamlines Facility team. L4 ATON combines optical parametric chirped pulse amplification (OPCPA) with a kilojoule-class, liquid-cooled glass amplifier, allowing operation at a repetition rate of one shot per minute, an order of magnitude higher than other lasers of comparable energy, says ELI.

Installed in the autumn of 2018, a series of upgrades led by ELI Beamlines’ laser and engineering teams, introduced innovations in amplifier cooling, laser diagnostics, control systems, and adaptive optics, significantly improving beam quality, stability, and reliability which have gradually built in-house expertise in the design, alignment, and operation of high-energy, high-repetition-rate laser systems.

The 18 m-long vacuum compressor system was constructed for the final femtosecond pulse compression. Working in cooperation with Lawrence Livermore National Laboratory, California, USA, new multilayer dielectric diffraction gratings were developed, which are a key innovation enabling operation at extremely high energy densities on optical components.

“This successful campaign has confirmed that we can operate safely and stably at this exceptional energy level,” said Roman Hvězda, Director of the ELI Beamlines Facility. “It is the result of years of work by our experts, who have built unique competences in the construction and operation of petawatt-class lasers.”

Future plans
Since 2021, the L4 ATON laser has been serving scientific experiments within the Plasma Physics Platform (P3). A commissioning campaign in December 2025 will integrate the system with new experimental setups, paving the way for external user experiments beginning in 2027 under the ELI User Program.

With its high stability and ability to repeat experiments at one-minute intervals, L4 ATON opens new possibilities for studies in laser-driven particle acceleration, extreme-state physics, and strong-field quantum electrodynamics, as well as for further progress in laser-driven fusion research.

The ELI team is now analyzing performance data to increase power toward 10 PW in 2026. This next step is intended to expand the facility’s experimental reach even further, solidifying ELI’s position among the leading research facilities for high-intensity laser science.

 



ELI working to increase power toward 10 PW in 2026


The development and operation of the L4 ATON laser system are supported by the Ministry of Education, Youth and Sports of the Czech Republic (MEYS) through European Structural and Investment Funds (ESIF), and by ELI ERIC Member States’ funding through long term contributions.

Source: optics.org

Đề xuất liên quan
  • Changchun Institute of Optics and Fine Mechanics has developed a high brightness HiBBEE non-uniform waveguide semiconductor laser

    High brightness semiconductor lasers have extremely important applications in fields such as laser radar. Traditional semiconductor lasers face challenges such as large vertical divergence angle, elliptical beam output, multiple lateral modes, and poor beam quality, which limit the direct application of high brightness semiconductor lasers.In response to this challenge, the team from the Bimberg S...

    03-18
    Xem bản dịch
  • Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

    Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by usi...

    2024-05-22
    Xem bản dịch
  • Acta: Revealing the mechanism of defect formation in additive manufacturing

    Main author: Yanming Zhang, Wentao Yana*The first unit: National University of SingaporePublished Journal: Acta MaterialiaResearch backgroundIndustry pain point: Although laser powder bed melting (LPBF) technology can manufacture complex components, the lack of consistent product quality is still the core bottleneck restricting its industrial application. Research has shown that up to 35% of proce...

    02-21
    Xem bản dịch
  • Laser gyroscopes measure small changes in daytime length on Earth

    Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolongin...

    2023-09-19
    Xem bản dịch
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    Xem bản dịch