Tiếng Việt

Laser-induced graphene sensor can diagnose diabetes through breath samples

633
2025-09-08 10:14:27
Xem bản dịch

In the U.S., one in five of the 37 million adults who has diabetes is not aware of it (according to the U.S. CDC – Centers for Disease Control & Prevention). Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing.

 



Diagnosing diabetes in a few minutes from just a breath sample


A research team led by Huanyu “Larry” Cheng, James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State University, University Park, PA, has developed a sensor that can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample.

Their achievement is described in Chemical Engineering Journal.

Previous diagnostic methods often used glucose found in blood or sweat, but the new sensor detects acetone levels in the breath. While everyone’s breath contains acetone as a byproduct of burning fat, acetone levels above a threshold of about 1.8 parts per million indicate diabetes.

“While we have sensors that can detect glucose in sweat, these require that we induce sweat through exercise, chemicals or a sauna, which are not always practical or convenient,” said Cheng. “This sensor only requires that the subject exhales into a bag, then dip the sensor in and wait a few minutes for results.”

Cheng said there have been other breath analysis sensors, but they detected biomarkers that required lab analysis. Acetone can be detected and read on-site, making the new sensors cost-effective and convenient.

Laser-induced graphene

In addition to using acetone as the biomarker, Cheng said another novelty of the sensor came down to design and materials — primarily laser-induced graphene. To create this material, a CO2 laser is used to burn the carbon-containing materials, such as the polyimide film in this work, to create patterned, porous graphene with large defects desirable for sensing.

“This is similar to toasting bread to carbon black if toasted too long,” Cheng said. “By tuning the laser parameters such as power and speed, we can toast polyimide into few-layered, porous graphene form.”

The researchers used laser-induced graphene because it is highly porous, meaning it lets gas through. This quality leads to a greater chance of capturing the gas molecule, since breath exhalation contains a relatively high concentration of moisture. However, by itself, the laser-induced graphene was not selective enough of acetone over other gases and needed to be combined with zinc oxide.

“A junction formed between these two materials that allowed for greater selective detection of acetone as opposed to other molecules,” Cheng said.

Another challenge was that the sensor surface could also absorb water molecules, and because breath is humid, the water molecules could compete with the target acetone molecule. To address this, the researchers introduced a selective membrane that could block water but allow the acetone to permeate.

Cheng said that right now, the method requires a subject to breathe directly into a bag to avoid interference from factors such as airflow in the ambient environment. The next step is to improve the sensor so that it can be used directly under the nose or attached to the inside of a mask. He also plans to investigate how an acetone-detecting breath sensor could be used to optimize health initiatives for individuals.

“If we could better understand how acetone levels in the breath change with diet and exercise, in the same way we see fluctuations in glucose levels depending on when and what a person eats, it would be a very exciting opportunity to use this for health applications beyond diagnosing diabetes,” he said.

Source: optics.org

Đề xuất liên quan
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Xem bản dịch
  • Lumentum revenue growth due to increased demand for artificial intelligence

    Photonic component manufacturer Lumentum says that its sales revenues will exceed half a billion dollars in the current quarter - and surpass $600 million this time next year, as demand from artificial intelligence (AI) data centers continues to accelerate. CEO Michael Hurlston announced a sales figure of just under $481 million for the quarter that ended June 28, up 56 per cent year-on-year and...

    08-15
    Xem bản dịch
  • Due to research conducted by scientists from South Korea and the UK, the power of lasers will increase by one million times

    Due to research conducted by scientists from South Korea and the UK, the power of lasers will be able to increase by one million times. The researchers plan to apply this improvement for scientific purposes.The study was led by representatives of Strathclyde University and the Korea Institute UNIST and GIST. Behind the scenes footage of their work in the journal Nature Photonics. It has been prove...

    2023-11-27
    Xem bản dịch
  • Received NASA contract! Breakthrough blue light laser technology leads the space power revolution

    On May 6th, NUBURU, a leading enterprise in high-power and high brightness industrial blue laser technology, announced that the company has been awarded a second phase contract worth $850000 by the National Aeronautics and Space Administration (NASA) to promote blue laser power transmission technology as a unique solution that significantly reduces the size and weight of equipment required for lun...

    2024-05-08
    Xem bản dịch
  • Ireland's first biological Brillouin microscope at Trinity College Dublin

    A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.Brillouin microscopy offers a route to optical investigation of a biological s...

    07-14
    Xem bản dịch