Tiếng Việt

The ECSTATIC fiber optic project worth 5.1 million euros aims to prevent bridge collapse

794
2025-08-18 10:25:32
Xem bản dịch

A new European research project is exploring whether the same fibre-optic cables that carry our internet could also serve as real-time sensors for hidden damage in infrastructure, including bridges, railways, tunnels and energy pipelines.

 


The €5.1 million ECSTATIC project, coordinated by Aston University in the UK, is trialling this breakthrough approach in a major UK city, using a heavily-used railway viaduct as its first live test site. The goal is to detect subtle structural shifts, stress, and vibrations in real time, using laser light pulses sent through fibre-optic cables already embedded right beneath our feet.

“Our aim is to create a global nervous system for critical infrastructure,” said Prof. David Webb, ECSTATIC project coordinator. “We are hoping to turn existing fiber-optic cables into a 24/7 early-warning system, detecting the tiniest tremors or stress fractures before they become catastrophic. If successful, it will be the difference between fixing a fault and cleaning up a tragedy.”

Light listens

Installing physical sensors across entire transport and energy networks would cost billions and cause major disruption. But the ECSTATIC project is taking a different route: it uses the infrastructure that’s already in place.

At the project’s first demonstration site (a major 19th-century rail viaduct carrying tens of thousands of trains per year), researchers will send ultra-precise laser pulses through buried fiber-optic cables. As trains pass overhead, the fibers subtly flex and vibrate. These movements change how the light behaves inside the cable, altering the phase and polarisation of the light, creating an optical fingerprint of the forces acting on the structure.

By measuring these changes and interpreting them using a new dual-microcomb photonic chip and AI signal processing, ECSTATIC aims to pinpoint early warning signs of damage or fatigue. Significantly, it works without interrupting internet traffic and without laying a single new cable.

“Cracks in bridges, viaducts, or tunnels don’t announce themselves; structures wear down gradually and silently, with the first signs of failure remaining invisible until it’s too late,” added Prof. Webb. “The UK and many places across Europe have hundreds of ageing railway bridges, with millions of vehicles passing under or over them each year. Many of the UK bridges date back to Victorian times, which could present a ticking time-bomb unless we take decisive steps to monitor them now.”

Preventing disasters

The need for early-warning systems is clear from recent bridge collapses in Europe that have cost lives and paralysed cities. In Italy, the Genoa Morandi Bridge disaster in 2018 killed 43 people when a 200-meter section of highway collapsed, despite internal warnings about structural risk years earlier. As recently as last year in Germany, the Carolabrücke in Dresden – a vital lifeline for the city – partially collapsed without warning. The incident severed critical utility lines, leaving parts of the city without hot water for several hours and triggering widespread transport disruption.

These events, though rare, reveal how vulnerable infrastructure can become when ageing structures are left unchecked, and how devastating the consequences can be. ECSTATIC aims to help authorities act before warning signs become disasters, by giving them better data, earlier, and without the need to install costly or disruptive new sensor systems.

With more than five billion kilometers of optical fiber installed across the globe, the potential for ECSTATIC’s technology is enormous, say its partners. If the trials in the UK prove successful, the approach could be rolled out across Europe’s transport and energy networks, enabling safer, smarter infrastructure monitoring at a fraction of the cost of traditional systems.

The project runs until July 2028. It brings together 13 partners from across Europe, including universities in Padova, L’Aquila, Chalmers, Alcalá, and West Attica, alongside industry groups Telecom Italia Sparkle, OTE Group, Nokia, Network Rail, MODUS, and Swiss SME Enlightra SARL, as well as the Greek seismology specialists NOA.

Dates for Photonics Partnership Annual Meeting 2026 announced
Photonics21, the European photonics industry platform, has announced that the Photonics Partnership Annual Meeting 2026 will take place will at the DoubleTree by Hilton Brussels City hotel on 9 & 10 June 2025. Next year’s event will focus on photonics in the next EU Framework Programme and will present the new Photonics Strategic Research and Innovation Agenda (2026) to the European Commission.

Photonics21 invites the industry in Europe to “take the opportunity to get the latest updates on the next EU Framework Programme and to network with your peers from the European photonics community.” The draft event programme as well as the link to the online registration and any further information will be published on the photonics21 website within the next months.

Source: optics.org

Đề xuất liên quan
  • GF Machining Solutions will showcase the latest members of its laser tradition on EPHJ

    At the EPHJ exhibition, GF Machining Solutions will showcase its latest laser solutions for microfabrication and 3D surface texture processing. Inspired by 70 years of innovation in the machine tool industry and 15 years of mastery of laser technology, GF Machining Solutions' latest innovations enable manufacturers to take speed and accuracy to new levels - they can experience it firsthand at EP...

    2024-06-06
    Xem bản dịch
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    Xem bản dịch
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    Xem bản dịch
  • Cobot Systems announces the establishment of a partnership between UR+and its laser welding collaborative robot system

    Cobot Systems announced that it has now become a UR+partner and showcased laser welding unit systems. This honor marks an important milestone in the company's journey of providing widely available automated labor solutions. This approval highlights Cobot Systems' commitment to providing innovative solutions compatible with UoRobot (UR) products, ensuring seamless collaboration with integrated lase...

    2024-05-16
    Xem bản dịch
  • Zhuoli Laser South Korea Branch Officially Opened

    In recent years, the performance of Chinese laser technology enterprises in the international market has become increasingly eye-catching. On September 20th, under the joint witness of nearly a hundred customer representatives from various industries in South Korea, the opening ceremony of Zhuolai Laser South Korea Branch was officially held.The branch is located in the Gyeonggi do region of south...

    2023-09-23
    Xem bản dịch