Tiếng Việt

The method of reducing the linewidth of laser beam by more than 10000 times

53
2025-07-28 12:00:37
Xem bản dịch

A project at Macquarie University has demonstrated a way to narrow the linewidth of a laser beam by a factor of over ten thousand.
Published in APL Photonics, the technique offers a promising route toward ultra-narrow linewidth lasers for potential use in a wide range of pump-pulse systems.

Laser linewidth measures how precisely a beam of light maintains its frequency and color purity, and narrow-linewidth lasers are increasingly valuable in applications such as precision sensing, spectroscopy, and quantum science.

 



Dampers at work: laser linewidth


But for these uses, control of the laser parameters is crucial. Existing ways of reducing the quantum noise properties of an input pulse include the use of Brillouin lasers, which force an interaction between the laser pulse and the vibrational excited states termed phonons. But this "phonon dephasing" can require relatively long timescales to achieve its noise reductions.

The team at Macquarie's Photonics Research Centre employed a different approach, and used stimulated Raman scattering.

"One current method to narrow laser linewidth uses Brillouin lasers, where sound waves interact with light; but the effect is relatively weak, typically narrowing by only tens to hundreds of times," commented Richard Mildren from the MQ Photonics Research Center.

"Our technique uses stimulated Raman scattering, where the laser stimulates much higher frequency vibrations in the material, and is thousands of times more effective at narrowing linewidth."

Diamond vibrations

Theory says that a Raman laser can have a dramatic damping effect, based around a complex three-wave interaction that counters inherent phase fluctuations in the laser spectrum.

The Macquarie team tested this principle using diamond crystals, which have exceptional thermal properties and provide a stable testing environment. In this architecture the Raman damping transfers the laser's random phase fluctuations into the diamond crystal as vibrations, where they are absorbed and dissipated in a few trillionths of a second.

Using a diamond crystal measuring a few millimeters across in a carefully designed cavity, the project tested this theory with a deliberately noisy input beam with linewidth exceeding 10 MHz. Results showed that the Raman scattering technique narrowed the output laser beam to the 1 kHz limit of their detection system, representing a reduction factor of more than 10,000, with further narrowing possible.

"Our computer modeling suggests we could narrow laser linewidth by more than 10 million times using variations of the current design," noted Macquarie's David Spence.

Improved spectral purity could enhance atomic clocks and gravitational wave detectors, as well as assisting the precise laser control needed in quantum computers, where phase noise inevitably introduces errors in the computations.

"We are essentially proposing a new technique for purifying the spectrum of lasers that can be applied to many different types of input lasers," commented Richard Mildren.

Source: optics.org

Đề xuất liên quan
  • BWT 969nm semiconductor pump source

    Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optic...

    05-09
    Xem bản dịch
  • The Japanese research team has manufactured a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in fields such as laser processing

    Recently, a Japanese research team has developed a vertical deep ultraviolet emitting semiconductor laser device based on AlGaN, which is expected to be applied in laser processing, biotechnology, and medical fields.As is well known, ultraviolet (UV) is an electromagnetic wave with a wavelength range of 100 to 380nm. These wavelengths can be divided into three regions: UV-A (315-380 nm), UV-B (280...

    2023-10-23
    Xem bản dịch
  • Personnel changes at Optimax, a precision optical manufacturer

    On November 25th, Optimax, the largest precision optics manufacturer in the United States, announced the appointment of Joseph Spilman as CEO and Pete Kupinski as President. After developing a comprehensive succession plan, Optimax CEO Rick Plympton will retire along with President and Founder Mike Mandina.Mandina stepped down in 2021 and passed on the title of CEO to Spilman, strategically appo...

    2024-11-28
    Xem bản dịch
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Xem bản dịch
  • Germany's Tongkuai Laser Austria's Parsing Intelligent Factory Completed Expansion

    This month, German laser giant Trumpf completed an expansion project at its smart factory in Pasing, Austria. The opening ceremony was held in the presence of members of the Tongkuai Group family and representatives from the business and political circles. Over the past two years, Tongkuai has invested approximately 40 million euros in the expansion of the factory. The company has built two new...

    2024-09-14
    Xem bản dịch