Tiếng Việt

ELI and LLNL strengthen transatlantic large-scale laser cooperation

682
2025-07-09 10:33:21
Xem bản dịch

Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.

“We are looking forward to expanding our existing collaborations with ELI on areas such as ultrabright high-repetition-rate sources for enhanced radiography, fusion and plasma physics research,” said James McCarrick, LLNL program director for High Energy Density and Photon Systems.

“This includes developing technologies with multiple applications such as high-repetition-rate target systems and diagnostics that can survive sustained operation close to one of the highest intensity and highest average power lasers in the world.”

ELI and LLNL have a long-standing partnership that began with LLNL building and delivering the L3 HAPLS (High-Repetition-Rate Advanced Petawatt Laser System) to the ELI Beamlines Facility near Prague in the Czech Republic. L3 HAPLS is designed to deliver petawatt-class pulses with energy of at least 30 joules and durations below 30 femtoseconds, at a 10 Hz repetition rate.

The system is already extensively used, capitalizing on its reliability and high repetition rate, while a clear plan is in place to continue ramping up its performance toward the full technical design parameters. These capabilities are essential for driving secondary sources like electrons, ions and x-rays, and for advancing the understanding of laser-plasma interactions.

The L3 HAPLS is a central feature of ELI's scientific offerings and provides a powerful tool for exploring high-intensity laser experiments with relevant applications to fields like materials science, medical therapy and non-destructive analysis. It is also particularly well suited for exploratory research in laser-driven fusion.

ELI as ‘proving ground’
ELI also has already acted as a proving ground for LLNL machine learning and optimization technologies. Last year, LLNL researchers performed an experiment in cooperation with ELI staff that integrated machine learning and optimization technologies to enhance the performance of the L3 system. This effectively boosted precision and efficiency, paving the way for even greater advancements in high-power laser experiments and research. The success of this experiment opens new avenues in laser-plasma interaction physics.

The close cooperation with the U.S. scientific user community is evident in the growing demand for ELI’s facilities within the framework of ELI’s user program. With experiment proposal submissions increasing and a rising user base, the U.S. stands out as the country with the third-highest number of proposals in the past five mission-based access calls. This underscores the significance of transatlantic cooperation in advancing laser science and highlights the strong and ongoing engagement of U.S.-affiliated researchers in ELI’s user program.

“We are pleased to see the active engagement of U.S.-based researchers in experiments at ELI, leveraging the advanced technology, including the L3 HAPLS system,” said Allen Weeks, ELI ERIC Director General. “This collaboration exemplifies the strength of international partnerships in driving forward scientific research and technological advancements. Together ELI and LLNL are shaping the future of laser science.”

The new agreement lays the foundation for the exchange of staff, internship opportunities for students and postdocs and fostering a culture of knowledge-sharing and intellectual collaboration. These initiatives will not only strengthen the ties between the two institutions but also expand the scope of joint research initiatives. Through this continued collaboration, ELI and LLNL are committed to addressing the challenges of tomorrow and shaping the future of laser science and technology.

Source: optics.org

Đề xuất liên quan
  • The improvement of additive manufacturing through artificial intelligence, machine learning, and deep learning

    Additive manufacturing (AM) has made it possible to manufacture complex personalized items with minimal material waste, leading to significant changes in the manufacturing industry. However, optimizing and improving additive manufacturing processes remains challenging due to the complexity of design, material selection, and process parameters. This review explores the integration of artificial int...

    02-24
    Xem bản dịch
  • What are the "unique secrets" of each family in terms of breaking the game and high reaction materials?

    Laser is considered a sharp sword that cuts iron like mud, but even sharper swords can have tricky moments. For example, in certain scenarios, there are materials with higher reflectivity, such as silver, copper, etc., known as "high reflection materials". High reflective materials have a low absorption rate for lasers, making them difficult to process and potentially causing equipment failure or ...

    2023-11-06
    Xem bản dịch
  • Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

    Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role. It is reported t...

    2024-06-19
    Xem bản dịch
  • Improved spectrometer color filter array for software calibration without the need for laser

    Hackaday will launch cool projects that may stimulate others to expand and enhance it, and even move in a completely new direction. This is the way the most advanced technology continues to evolve. This DIY spectrometer project is a great example of this spirit. It comes from Michael Prathofer, who was inspired by Les Wright's PySpectrometer, a simple device pieced together by a pocket spectrom...

    2024-05-28
    Xem bản dịch
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    2024-04-18
    Xem bản dịch