Tiếng Việt

Shanghai Institute of Optics and Fine Mechanics has made progress in the field of high-intensity laser cracking of high-density polyethylene

531
2025-06-16 10:48:19
Xem bản dịch

Recently, a team from the National Key Laboratory of Ultra strong Laser Science and Technology at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with the Arctic University of Norway (UiT) to make progress in the efficient cracking of high-density polyethylene (HDPE) using strong laser molecular bond breaking technology. The research results were published in Advanced Materials Interfaces under the title "Laser Induced Plasma Effects on Bond Breaking in High Density Polyethylene Pyrolysis".

Traditionally, laser-induced breakdown spectroscopy (LIBS) has been mainly used for elemental analysis of HDPE materials, limiting further exploration of their physical and chemical bond behavior. In the preliminary work, the team proposed a concept of using strong lasers to achieve plastic cracking [Sustainable Materials Technologies 41, e01074 (2024)]. However, existing research still has limitations in understanding the behavior after bond breakage, especially in terms of the mechanism of product formation and the plasma and ionization effects under different laser harmonics, which have not been systematically understood.

In this study, three types of nanosecond laser harmonics were used: 1064 nm (1.17 eV), 532 nm (2.34 eV), and 266 nm (4.6 eV) to investigate their interaction with HDPE. The cleavage of C-C and C-H bonds in HDPE requires energies of 3.6 eV and 4.2 eV, respectively, while the ionization potential of HDPE is approximately between 8-10 eV. The laser harmonics used in the experiment can simultaneously induce photothermal and photochemical effects. Among them, the 266 nm laser, due to its high photon energy, can directly achieve bond breaking and promote the formation of free radicals through multiphoton absorption, while the 1064 nm and 532 nm lasers mainly rely on avalanche ionization to achieve molecular bond breaking. These processes generate free radicals, which emit fluorescence at specific wavelength positions during recombination (e.g. C-C bond at 500 nm, C-H bond at 432.3 nm, C-N bond at 386.1 nm, and H α line at 656.3 nm). Among them, 266 nm showed a more efficient bond breaking efficiency, as shown in Figure 1 (a to c). This study successfully achieved efficient breaking of HDPE molecular bonds using strong laser pulses, revealing previously unexplored physical mechanisms and potential product generation pathways in the bond dissociation process. The behavior characteristics of photons and plasmas under the action of laser fields were analyzed in depth, providing key support for further understanding and optimization of laser efficient plastic cracking processes and technologies.

 


Figure 1. Spectral evidence of HDPE molecular bond breakage under different laser harmonics a) 1064 nm, b) 532 nm, c) 266 nm
Relevant research has been funded by NSAF Joint Fund, Shanghai Science and Technology Plan, Chinese Academy of Sciences International Cooperation Program and CSC International Student Scholarship.

Source: Opticsky

Đề xuất liên quan
  • Laser assisted detection of past climate in ice cores

    Around the poles, ice accumulated over millions of years can reach depths of several kilometers. The undisturbed deep ice preserves information about the past. The air bags and particles trapped in the ice tell scientists what the atmosphere used to be like. This has aroused great interest among paleoclimatologists in glacier ice cores.By regularly sampling the ice core at its depth, they can reco...

    2023-11-01
    Xem bản dịch
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    Xem bản dịch
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    Xem bản dịch
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    Xem bản dịch
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    Xem bản dịch