Tiếng Việt

First 6-inch thin film lithium niobate photonic chip wafer pilot production line

293
2025-06-11 10:52:36
Xem bản dịch

Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produced on a large scale, with key technical indicators reaching the international advanced level.

Photon chips are the core hardware carrier of photon computing, and their industrialization process is related to the autonomous and controllable strategy in the field of quantum information. Previously, due to the lack of a common key process technology platform, China's photonics technology faced the dilemma of "difficult mass production of laboratory results", which was a "bottleneck" problem restricting the development of the industry. The launch of the photonic chip pilot line became the key to breaking the deadlock. As the "number one project" of the quantum technology race track in Binhu District and a future industrial landmark in the region, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute broke ground at the end of 2022 and took the lead in launching the construction of China's first photon chip pilot line. Now, the first wafer has been successfully offline, and the pilot platform has achieved mass production and production.

 


It is reported that as a high-performance optoelectronic material, thin film lithium niobate has advantages such as ultrafast electro-optic effect, high bandwidth, and low power consumption, showing great potential in fields such as 5G communication and quantum computing. However, due to the high brittleness of thin film lithium niobate materials, the preparation of large-sized thin film lithium niobate wafers has always been challenging. Currently, with the advanced nanoscale processing equipment and rapid process iteration capability of the pilot platform, the process team has systematically solved the bottleneck of wafer level photonic chip integration through a combination of deep ultraviolet (DUV) lithography and thin film etching through extensive process validation and optimization.

Binhu District is one of the main gathering areas for the integrated circuit industry in Wuxi. A number of high-energy level scientific and technological innovation platforms have been established here, including the National Integrated Circuit Design Center and the Intelligent Industry Innovation Center of Tsinghua Wuxi Research Institute; Gathering over 200 integrated circuit enterprises, we have established an integrated circuit design industry cluster represented by companies such as Zhongke Xin, Zhuosheng Microelectronics, and Guoxin Microelectronics, and have been selected as a characteristic industry cluster in the province.

Source: Opticsky

Đề xuất liên quan
  • German team develops and promotes laser technology for formable hybrid components

    Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, su...

    2023-08-16
    Xem bản dịch
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    Xem bản dịch
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    Xem bản dịch
  • TriLite has partnered with AMS OSram to develop AR smart glasses displays

    TriLite has announced a technical collaboration with ams OSRAM, a global leader in smart sensors and transmitters. Ams Osram will supply its sub-assembled RGB laser diode to "light up" TriLite's Trixel® 3 laser beam scanner (LBS), the world's smallest AR smart glasses projection display.The award-winning Trixel® 3 LBS offers breakthrough compactness and light weight, as well as a bright an...

    2023-09-06
    Xem bản dịch
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    Xem bản dịch