Tiếng Việt

Xi'an Institute of Optics and Fine Mechanics has made significant progress in the field of metasurface nonlinear photonics

37
2025-04-30 15:20:49
Xem bản dịch

Recently, the Research Group of Nonlinear Photonics Technology and Application in the Transient Optics Research Room of Xi'an Institute of Optics and Mechanics, Chinese Academy of Sciences has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in Laser&Photonics Reviews (IF=9.8), the top journal of the first district of the Chinese Academy of Sciences. The first author of the paper is Shi Wenjuan, a 2020 doctoral student. The first completion unit and communication unit of the paper are Xi'an Institute of Optics and Mechanics.

Nonlinear optical technology is an important technology in cutting-edge fields such as all-optical signal processing, biomedical imaging, and quantum information. However, it is limited by the weak nonlinear optical effects of traditional materials, dependence on strong laser sources, and long interaction distances, making it difficult to meet the development needs of integrated and low-power nanophotonic devices. Epsilon near zero (ENZ) materials have ultrafast and ultra strong nonlinear optical effects, which are expected to solve this problem. Micro nano structures based on quasi continuous bound states in the continuum (Q-BIC) significantly enhance the interaction between light and matter through high-quality factor resonance, opening up new avenues for regulating nonlinear optical effects. However, the narrow bandwidth characteristics and extreme sensitivity to structural parameters of the Q-BIC system severely restrict its practical applications. How to break through the constraint relationship between high quality factor and working bandwidth at the micro nano scale, and achieve the design and preparation of high-performance photonic devices, has become a key scientific problem that urgently needs to be solved in the field of photonic integration.

In response to the above issues, the research team has proposed for the first time a non local metasurface structure design with strong coupling between quasi guided mode (Q-GM) and ENZ mode. By introducing periodic perturbations to achieve the folding of the first Brillouin zone, an angle adjustable high-quality factor Q-GM has been successfully constructed, breaking through the wave vector and wavelength limitations of traditional Q-BIC.


Figure 1. (a) Three dimensional structure (b) Linear transmission spectrum measured and simulated


Figure 2. (a) Band folding of ENZ free thin film (b) Relationship between resonance transmission peak and structural parameters


Figure 3. Measurement and simulation of (a) nonlinear refractive index coefficient and (b) nonlinear absorption coefficient under normal incidence

 


Figure 4. Linear optical properties of oblique incidence (a) Experimental and simulated linear transmission spectra at different incidence angles; (b) The relationship between electric field distribution, resonance transmission peak, and incident angle

This coupling mechanism has three breakthrough advantages: the strong field overlap effect between Q-GM and ENZ modes generates a 260 meV energy level anti crossover splitting, significantly enhancing nonlinear optical effects; Under normal incidence conditions, the nonlinear refractive index of the metasurface reaches In2I=3.8 × 10-13m2/W, which is three orders of magnitude higher than the nonlinear coefficient of the ENZ film and effectively reduces the power consumption of on-chip nonlinear photonic devices; Thanks to the high-quality factor of Q-GM in the wide wave vector, the experimental measurement of the nonlinear coefficient of the metasurface has robustness with increasing incident angle, achieving broadband tunable strong nonlinear optical effects.

The research results provide a new technological route for the development of nonlinear photonic devices with large angle and multi wavelength modulation, and demonstrate important application potential in fields such as integrated photonics, all-optical signal processing, and biosensing imaging.

Source: Opticsky

Đề xuất liên quan
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    Xem bản dịch
  • LASER CHINA 2025 on-the-Spot, What New Technologies are Trending This Year?

    Every year, Shanghai is lit up with a “feast of light”, that is LASER World of PHOTONICS CHINA, which has lasted for 20 years and become an arena for global photoelectric enterprises to display and compete, instead of just an exhibition hall of devices. Chanelink team visited all these halls for laser technology, thoroughly learning the cutting-edge trends in photoelectric industry.As a technical...

    03-19
    Xem bản dịch
  • Zhuoli Laser South Korea Branch Officially Opened

    In recent years, the performance of Chinese laser technology enterprises in the international market has become increasingly eye-catching. On September 20th, under the joint witness of nearly a hundred customer representatives from various industries in South Korea, the opening ceremony of Zhuolai Laser South Korea Branch was officially held.The branch is located in the Gyeonggi do region of south...

    2023-09-23
    Xem bản dịch
  • Progress in research on intrinsic flexible and stretchable optoelectronic devices in the Institute of Chemistry

    Organic polymer semiconductor materials, due to their unique molecular structure and weak van der Waals interactions, are endowed with the characteristics of soluble processing and easy flexibility, and have potential applications in portable and implantable medical monitoring devices. A highly flexible, skin conformal, and excellent spatial resolution X-ray detector is expected to be integrated w...

    2024-04-09
    Xem bản dịch
  • Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

    authorElsa Lani, Aloka SinhaabstractAt present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host m...

    2024-03-04
    Xem bản dịch