Tiếng Việt

China has successfully developed the world's first 193 nanometer compact solid-state laser

993
2025-03-24 15:25:47
Xem bản dịch

The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power will increase by a hundred times - when lasers are portable like laptops, precision manufacturing will usher in a mode revolution.

Deep ultraviolet (DUV) lasers play a crucial role in semiconductor lithography, high-resolution spectroscopy, precision material processing, and quantum technology due to their high photon energy and short wavelength characteristics. Compared with excimer lasers or gas discharge lasers, this type of laser has higher coherence and lower power consumption, providing the possibility for the development of system miniaturization.

 



According to Advanced Photonics Nexus, the research team of the Chinese Academy of Sciences has made an important breakthrough and successfully developed a compact all solid state laser system that can generate 193 nm coherent light. This wavelength is crucial for photolithography processes, which form the manufacturing foundation of modern electronic devices by etching complex circuit patterns on silicon wafers.

The new laser system has a working repetition rate of 6 kHz and uses a self-developed ytterbium doped yttrium aluminum garnet (Yb: YAG) crystal amplifier to generate 1030 nanometer fundamental frequency light.

Experimental device
The laser output is divided into two paths: one path generates 258 nanometer ultraviolet light (output power of 1.2 watts) through fourth harmonic conversion, and the other path drives an optical parametric amplifier to generate 1553 nanometer laser (power of 700 milliwatts).

 


Subsequently, these two beams of light were mixed with cascaded LBO (lithium triborate, LiB3O5) crystals to obtain a 193 nanometer deep ultraviolet laser output with an average power of 70 milliwatts and a linewidth less than 880 megahertz.

The research team innovatively loaded a spiral phase plate onto a 1553 nanometer beam before mixing, successfully obtaining a vortex beam carrying orbital angular momentum. This marks the first time internationally that a solid-state laser has directly output a 193 nanometer vortex beam.

 



This breakthrough achievement not only provides a new seed light source for hybrid ArF excimer lasers, but also demonstrates important application prospects in fields such as wafer processing, defect detection, quantum communication, and optical micro control.
This innovative laser technology not only improves the efficiency and accuracy of semiconductor lithography, but also opens up new paths for advanced manufacturing technology.

The successful generation of the 193 nanometer vortex beam may trigger a revolutionary change in the field of electronic device manufacturing and promote breakthrough progress in related technologies.

Source: Yangtze River Delta Laser Alliance

Đề xuất liên quan
  • Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

    Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improve...

    2023-09-18
    Xem bản dịch
  • 3D printing giant Materialise reorganizes

    Recently, the stock price of Materialise, a well-known company in the 3D printing industry, plummeted by 35% overnight. This news was like a heavy bomb, instantly causing a storm in the industry! What exactly happened to Materialise, which was originally developing steadily? Why has there been such a significant drop in stock prices? Today, let's delve into the reasons behind this.The truth behind...

    03-03
    Xem bản dịch
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Xem bản dịch
  • Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

    Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by usi...

    2024-05-22
    Xem bản dịch
  • Additive Manufacturing Software Market 2025: Analysis, Data, and Forecasting

    In March 2025, Additive Manufacturing Research (AMR) released its latest 3D printing market research report, "AM Software Markets 2025: Analysis, Data, and Forecast," which provides a comprehensive and in-depth analysis of the 3D printing software industry. The latest research findings indicate that global revenue from additive manufacturing (AM) software is expected to grow from $2.44 billion in ...

    03-17
    Xem bản dịch