Türkçe

Tsinghua University develops efficient and stable perovskite quantum dot deep red light devices

639
2025-03-18 14:02:42
Çeviriyi gör

Semiconductor quantum dots have the advantages of high quantum yield, narrow emission spectrum, and compatibility with solution processes. They have shown broad application prospects and enormous economic value in the field of optoelectronic materials and devices, and related research has won the Nobel Prize in Chemistry in 2023.

Compared with traditional II-VI and III-V quantum dots (such as CdSe, CdS, InP, etc.), perovskite quantum dots have unique advantages such as low cost, simple synthesis process, and continuously tunable spectra, and have attracted much attention in recent years. The external quantum efficiency of light-emitting devices based on perovskite quantum dots has been improved to over 20%, reaching the threshold for commercial applications. However, due to the poor stability of perovskite quantum dots, the operating life of light-emitting devices is only tens or hundreds of hours, which hinders their further industrialization.

Perovskite quantum dots require ligands to bind to their surface in order to maintain colloidal stability. However, during the growth, purification, film formation, and storage of perovskite quantum dots, highly dynamic and unstable ligands on the surface are prone to detachment, resulting in insufficient coordination of surface atoms, an increase in unsaturated and dangling bonds, and non coordinated atoms on the surface easily binding to other atoms, leading to aggregation or Oswald ripening of perovskite quantum dots, producing various defects and further affecting their luminescence performance and stability.

Recently, the team led by Ma Dongxin from the Department of Chemistry at Tsinghua University proposed a molecular induced quantum dot maturation control strategy, achieving efficient and stable perovskite quantum dot deep red light devices. The team has designed a series of bidentate organic small molecules with small size and molecular flexibility, which can adhere to the surface of perovskite quantum dots by twisting their own structure, interact with mismatched Pb2+, maintain a stable surface state, suppress the adverse aging and aggregation phenomena of perovskite quantum dots, reduce the density of surface defect states, and improve quantum yield.


Figure 1. Schematic diagram of molecular induced quantum dot maturation control strategy


The team has constructed a deep red light device based on high-performance perovskite quantum dots, with a luminescence peak at 686nm and an external quantum efficiency of up to 26.0%. The device exhibits excellent operational stability, with a half-life of 310 minutes at a constant high current density of 13.3mA cm-2, and a half-life of up to 10587 hours at an initial radiance of 190mWSr-1m-2. In addition, this perovskite quantum dot solution exhibits excellent storability, with external quantum efficiencies of 21.7% and 20.3% for devices constructed from the solution after one and three months of storage, respectively.

The above results indicate that the molecular induced quantum dot maturation control strategy proposed in the paper can effectively improve the efficiency and stability of perovskite quantum dot light-emitting devices, making them practical and promising in high-definition displays and biomedical treatments.


Figure 2. Optoelectronic properties of perovskite quantum dot light-emitting devices

 


Figure 3. Stability of perovskite quantum dot light-emitting devices


The related research results, titled "Molecular Induced Ripening Control in Perovskite Quantum Dots for Efficient and Stable Light Emitting Diodes", were published on March 14th in Science Advances.

Chen Jiawei, a postdoctoral fellow in the Department of Chemistry at Tsinghua University, Chen Shulin, an associate professor at the School of Semiconductors (School of Integrated Circuits) at Hunan University, and Liu Xiangyu, a doctoral student in the Department of Chemistry at Tsinghua University, are the co first authors of the paper. Associate Professor Ma Dongxin from the Department of Chemistry at Tsinghua University is the corresponding author of the paper, and the Department of Chemistry at Tsinghua University is the first communication unit. The research has received support from the National Natural Science Foundation of China's Youth Fund, Tsinghua University's Solid Science Program, the Chinese Postdoctoral Program, the Chinese Postdoctoral Special Fund, the National Postdoctoral Researcher Program, and the Tsinghua University's "Water and Wood Scholars" Program.

Source: opticsky

İlgili öneriler
  • Trumpf announces four personnel changes

    Recently, global laser giant Germany's Trumpf announced four personnel changes, namely Claudio Santopietro as the head of intelligent factory consulting and automation, Kevin Cuseo as the head of software sales, Julian Schorpp as the product manager for automatic bending products, and Adam Simons as the head of additive manufacturing for Trumpf North America.According to relevant information, Clau...

    2024-11-26
    Çeviriyi gör
  • Israeli startup has developed a new laser powder bed fusion technology (SLS)

    Starting company 3DM from Israel has developed a new laser powder bed fusion technology (SLS) and recently released its first product. It is reported that the new technology developed by this young company established in 2016 will open up the possibility of new materials.3DM quantum cascade laserThe quantum cascade laser (QCL) stands out in the competition of 3DM in the SLS field. QCL was develope...

    2023-10-27
    Çeviriyi gör
  • New two-photon aggregation technology significantly reduces the cost of femtosecond laser 3D printing

    Scientists at Purdue University in the United States have developed a new type of two-photon polymerization technology. This technology cleverly combines two lasers and utilizes 3D printing technology to print complex high-resolution 3D structures while reducing femtosecond laser power by 50%. It helps to reduce the cost of high-resolution 3D printing technology, thereby further expanding its appl...

    2024-07-05
    Çeviriyi gör
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    Çeviriyi gör
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    Çeviriyi gör