Türkçe

Scientists decipher the code for extending the lifespan of perovskite solar technology

341
2025-03-03 15:28:10
Çeviriyi gör

The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.

Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial potential has always been limited by structural defects, mainly iodine leakage issues. Over time, the escape of iodine can lead to material degradation, reducing device performance and durability.

Through collaboration with the UK National Physical Laboratory and the University of Sheffield, scientists have discovered a solution: embedding alumina (Al2O3) nanoparticles in batteries to capture iodine elements. This breakthrough paves the way for the development of a new generation of solar cells with longer lifespan and lower cost.

The corresponding author of the study, Dr. Hashini Perera from the Institute of Advanced Technology at the University of Surrey, said, "Our research results are exciting. Ten years ago, the idea of long-term stable operation of perovskite cells in real environments was still out of reach. Through this improvement, we have achieved a breakthrough in stability and performance, pushing perovskite technology further towards mainstream energy solutions.

 



Dr. Hashini Perera, a graduate student at the Institute of Advanced Technology at the University of Surrey
This study, published in the journal EES Solar, tested the improved battery by simulating high temperature and high humidity conditions in real environments. The results showed that solar cells embedded with Al2O3 nanoparticles maintained high performance in tests lasting over two months (1530 hours), with a tenfold increase in lifespan compared to unimproved cells with only 160 hours.

Further analysis shows that Al2O3 nanoparticles not only help form a more uniform perovskite structure, reduce defects, and improve conductivity, but also form a two-dimensional perovskite protective layer, effectively blocking moisture erosion.

Dr. Imalka Jayawardena from the Advanced Technology Institute at the University of Surrey added, "By addressing the common challenges of perovskite technology, our research has opened up new possibilities for developing more economical, efficient, and easily accessible solar energy technologies. This is a crucial step in developing high-performance practical solar cells that will accelerate their global commercialization process.

Professor Ravi Silva, Director of the Institute of Advanced Technology and Interim Director of the Surrey Institute for Sustainable Development, emphasized that "as the net zero emissions target approaches, expanding the application of renewable energy is more urgent than ever. Such technological breakthroughs will play a key role in meeting global energy demand and promoting sustainable development transformation. The latest analysis by the Confederation of British Industry also shows that skills training in the renewable energy sector can not only enhance career prospects, but also bring higher salaries than the national average, confirming the dual economic and environmental benefits of clean energy investment.

Source: opticsky

İlgili öneriler
  • Processing application of ultrafast laser on bulk metallic glass

    Recently, an international research team led by Professor Zhang Peilei from the School of Materials Science and Engineering at Shanghai University of Engineering and Technology published a review paper titled "Research status of femtosecond lasers and nanosecond lasers processing on bulk metallic glasses (BMGs)" in the renowned journal Optics&Laser Technology in the field of optics and lasers....

    2023-09-18
    Çeviriyi gör
  • 85000W laser cutting machine emerged and led the world

    Recently, Pentium Laser and Shenzhen Chuangxin Laser launched the world's first 85000W laser cutting machine, once again breaking the record for the highest power in the cutting field.Zhang Qingmao, Director of the Laser Processing Committee of the Chinese Optical Society, Xu Xia, rotating CEO of Pentium Group, Cai Liang, Director of the Final Inspection Department of Pentium Laser Manufactu...

    2023-09-16
    Çeviriyi gör
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    Çeviriyi gör
  • Germany's Tongkuai Laser Austria's Parsing Intelligent Factory Completed Expansion

    This month, German laser giant Trumpf completed an expansion project at its smart factory in Pasing, Austria. The opening ceremony was held in the presence of members of the Tongkuai Group family and representatives from the business and political circles. Over the past two years, Tongkuai has invested approximately 40 million euros in the expansion of the factory. The company has built two new...

    2024-09-14
    Çeviriyi gör
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Çeviriyi gör