Türkçe

Scientists decipher the code for extending the lifespan of perovskite solar technology

179
2025-03-03 15:28:10
Çeviriyi gör

The latest research led by the University of Surrey shows that alumina (Al2O3) nanoparticles can significantly enhance the lifespan and stability of perovskite solar cells, extending the service life of such high-efficiency energy devices tenfold.

Although perovskite solar cells have advantages such as low cost and light weight compared to traditional silicon-based technologies, their commercial potential has always been limited by structural defects, mainly iodine leakage issues. Over time, the escape of iodine can lead to material degradation, reducing device performance and durability.

Through collaboration with the UK National Physical Laboratory and the University of Sheffield, scientists have discovered a solution: embedding alumina (Al2O3) nanoparticles in batteries to capture iodine elements. This breakthrough paves the way for the development of a new generation of solar cells with longer lifespan and lower cost.

The corresponding author of the study, Dr. Hashini Perera from the Institute of Advanced Technology at the University of Surrey, said, "Our research results are exciting. Ten years ago, the idea of long-term stable operation of perovskite cells in real environments was still out of reach. Through this improvement, we have achieved a breakthrough in stability and performance, pushing perovskite technology further towards mainstream energy solutions.

 



Dr. Hashini Perera, a graduate student at the Institute of Advanced Technology at the University of Surrey
This study, published in the journal EES Solar, tested the improved battery by simulating high temperature and high humidity conditions in real environments. The results showed that solar cells embedded with Al2O3 nanoparticles maintained high performance in tests lasting over two months (1530 hours), with a tenfold increase in lifespan compared to unimproved cells with only 160 hours.

Further analysis shows that Al2O3 nanoparticles not only help form a more uniform perovskite structure, reduce defects, and improve conductivity, but also form a two-dimensional perovskite protective layer, effectively blocking moisture erosion.

Dr. Imalka Jayawardena from the Advanced Technology Institute at the University of Surrey added, "By addressing the common challenges of perovskite technology, our research has opened up new possibilities for developing more economical, efficient, and easily accessible solar energy technologies. This is a crucial step in developing high-performance practical solar cells that will accelerate their global commercialization process.

Professor Ravi Silva, Director of the Institute of Advanced Technology and Interim Director of the Surrey Institute for Sustainable Development, emphasized that "as the net zero emissions target approaches, expanding the application of renewable energy is more urgent than ever. Such technological breakthroughs will play a key role in meeting global energy demand and promoting sustainable development transformation. The latest analysis by the Confederation of British Industry also shows that skills training in the renewable energy sector can not only enhance career prospects, but also bring higher salaries than the national average, confirming the dual economic and environmental benefits of clean energy investment.

Source: opticsky

İlgili öneriler
  • Laser assisted detection of past climate in ice cores

    Around the poles, ice accumulated over millions of years can reach depths of several kilometers. The undisturbed deep ice preserves information about the past. The air bags and particles trapped in the ice tell scientists what the atmosphere used to be like. This has aroused great interest among paleoclimatologists in glacier ice cores.By regularly sampling the ice core at its depth, they can reco...

    2023-11-01
    Çeviriyi gör
  • Vigo University School of Technology invents laser glass recycling system

    LaserON, a laser industrial application group at the University of Vigo, is leading a European project that aims to revolutionize the glass recycling process by developing a new technology called glass laser conversion, so that everyone can recycle at home. This group is led by Professor Juan Pou and Professor Rafael Comesa ñ a, and is part of Cintecx, leading EverGlass. Its partners come f...

    2024-01-19
    Çeviriyi gör
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    Çeviriyi gör
  • Sunny Optical's "Optical Imaging Lens" Announced

    Recently, according to the information of the China National Intellectual Property Administration, Zhejiang Sunny Optics Co., Ltd. has obtained a patent named "Optical Imaging Lens", with authorization announcement No. CN221899396U and application date of 2024-01-31.The patent abstract shows that the present application discloses an optical imaging lens, comprising a barrel and first to eighth len...

    2024-10-31
    Çeviriyi gör
  • The research team from the School of Engineering at Columbia University in the United States has broken through the "bandwidth bottleneck" of high-performance computing in new photonic chips

    When running various artificial intelligence programs such as large language models, although data centers and high-performance computers are not limited by the computing power of their individual nodes, the amount of data transmitted between nodes is currently the root cause of the limitations on the performance and bandwidth transmission of these systems.Because some nodes in the system are more...

    2023-10-31
    Çeviriyi gör