Türkçe

Photonic hydrogel of high solid cellulose with reconfigurability

1013
2025-02-17 14:33:51
Çeviriyi gör

Recently, Qing Guangyan, a researcher team from the Research Group on Bioseparation and Interface Molecular Mechanism (1824 Group) of Biotechnology Research Department of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, designed and prepared a highly solid cellulose photonic hydrogel with reconfigurability and mechanical discoloration. This preparation method opens up a new way to manufacture solid photonic hydrogels, and its intelligent optical response characteristics are expected to expand the application of bionic photonic cellulose materials in medical, energy and industrial fields.

The structure of Bouligand, which mimics the natural world, exhibits excellent mechanical properties due to its interlayer coupling and stress transfer mechanism, inspiring the development of high-performance materials such as impact resistant bioplastics, ceramic protective clothing, and biomimetic alloy composites. Although significant progress has been made in engineering plasticity through molecular level design and multi-scale structural optimization of biomimetic Bouligand structures, most existing materials are composed of single scale brittle units, lacking graded active interfaces and autonomous response capabilities, resulting in limited ductility and functionality. Therefore, it is necessary to break through the existing design bottlenecks and develop a new Bouligand structural material system that simultaneously possesses multi-level active interfaces, dynamic response capabilities, and high toughness, in order to enhance and optimize the rigidity and ductility of the material. Building strategies that balance micro motion and structural robustness, fundamentally breaking the contradiction between brittleness and toughness, and overcoming key technical challenges that hinder the practical application of biomimetic materials, is expected to solve the above-mentioned problems.

 



In this work, the team provided a widely applicable solution for the Bouligand structure through self-assembly of cellulose nanocrystals (CNC). This strategy achieves precise control of the spatial arrangement of the network matrix through nanofiber sliding and hydrogen bonding reconstruction. This transition is driven by the hydrogen bond action activated by water molecules to form a solid photonic hydrogel. The obtained Bouligand structure hydrogel shows excellent mechanical properties. Compared with the initial hydrogel, its toughness value has increased by 5 times, reaching 155.5MJ/m&# 179;, Stretchability exceeds 950%. In addition, these photonic hydrogels exhibit dynamic color change ability, can switch between red and blue, and maintain stable electrical sensitivity during reversible stretching. The imaging interface of the photonic hydrogel is durable and can be used repeatedly. It only needs to soak in water for 5 minutes to restore its activity. This work has opened up a new path for the practical application of CNC, which is expected to be applied in fields such as sustainable bioplastics, flexible electronic substrates, and intelligent photonic devices.

In recent years, the team led by Qing Guangyan has made a series of progress in the chiral functionalization research of nanocellulose. In the early stage, they have developed multi-mode and convertible chiral optical anti-counterfeiting films (Adv. Funct. Mater., 2022), flexible sweat sensors based on photonic cellulose nanocrystals (Small, 2023), left-handed circularly polarized luminescent cellulose films (Adv. Mater., 2024), and synergistic color changing and conductive cellulose nanocrystal photonic patches (Mater. Horizon., 2024).

The related research findings, titled "Highly robust cellulose photonic hydrogels with reconfigurability and mechanochromism," were recently published in Materials Today. The first author of this work is Li Qiongya, a doctoral student from the 1824 group of the institute.

Source: opticsky

İlgili öneriler
  • Processing application of ultrafast laser on bulk metallic glass

    Recently, an international research team led by Professor Zhang Peilei from the School of Materials Science and Engineering at Shanghai University of Engineering and Technology published a review paper titled "Research status of femtosecond lasers and nanosecond lasers processing on bulk metallic glasses (BMGs)" in the renowned journal Optics&Laser Technology in the field of optics and lasers....

    2023-09-18
    Çeviriyi gör
  • Thales will provide laser payloads for Hellas Sat 5

    Hellas Sat, which holds a majority stake in Arabsat, has reached a memorandum of understanding with Thales Alenia Space to collaborate on the development of a luminous communication payload for an upcoming new mission that will be launched on the future Hellas Sat 5 telecommunications satellite, which will operate at 39 degrees east longitude.The partnership between Hellas Sat and Thales Alenia Sp...

    2024-01-30
    Çeviriyi gör
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    Çeviriyi gör
  • Scientists have demonstrated a new way to make infrared light from quantum dots, and the experiments are still in the early stages

    Scientists at the University of Chicago have demonstrated a way to create infrared light using colloidal quantum dots. The researchers say this approach shows great promise; Although the experiment is still in its early stages, these quantum dots are already as efficient as existing conventional methods.These points could one day form the basis of infrared lasers, as well as small and inexpensive ...

    2023-09-08
    Çeviriyi gör
  • Huashu High tech launches a large format 12 laser metal 3D printer at TCT Asia

    Chinese industrial 3D printer manufacturer Huashu High tech has launched the FS811M metal powder bed fusion series platform. The FS811M series has a construction volume of 840 x 840 x 960 millimeters and can be equipped with powerful 6, 8, 10, or 12 x 500 watt fiber lasers."As the latest member of the Huashu High tech Metal 3D printer product portfolio, FS811M originates from our joint innovation ...

    2024-05-13
    Çeviriyi gör