Türkçe

Trends and Reflections on the Laser Industry in 2025

1892
2025-01-02 16:19:01
Çeviriyi gör

In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.

In 2025, practitioners in the laser and manufacturing industries still face many challenges.
The turbulent international situation in Europe and America, as well as the threat of various geopolitical conflicts, will lead to supply chain restructuring, major changes in the automotive manufacturing industry, and a glimmer of hope for the semiconductor industry
With the increasingly fierce competition in the industry, words such as "internal competition", "reshuffling", and "cold winter" will continue to be heard throughout the year. Every enterprise in the laser industry chain is striving to explore new paths, striving to break through and protect themselves in the era of great change.

Looking back at 2024 and looking ahead to 2025, what industry trends are worth paying attention to?
According to the latest research data from Optech Consulting, it is expected that the global laser material processing equipment market will reach $23 billion by 2024.



Image source: Optech Consulting
From the chart, the market size has decreased by 1% to 5% compared to the historical high of $23.5 billion set in 2023.
Geographically speaking, only a few markets have shown growth this year, while demand in the European and American markets has declined, while the Chinese market has remained stable with no significant upward or downward trend.

From an application perspective, market growth is gradually shifting from macro processing to micro processing. Prior to this, the market demand for laser precision machining equipment had experienced a two-year slump, but this year the demand has rebounded. In contrast, the cutting equipment market has declined for the second consecutive year, while the growth rate of the laser welding market has slowed down due to the maturity of China's new energy vehicle market.

Based on existing information and overall trends, the market trend of the laser industry in 2024 is expected to continue until early 2025, with precision machining continuing to strengthen and the macro machining sector also expected to continue to decline.

In addition to laser processing, other fields are also emerging. Thanks to the rapid development of artificial intelligence, photonics is gradually moving towards the semiconductor field. When will it enter the PCB level or even chip level applications? The answer seems to be now.

It is reported that billions of dollars have been invested in companies that are driving photonics towards PCB and chip levels by 2024. For example, in October, Google Ventures invested $400 million in Lightmatter, with the ultimate goal of elevating photonics to the level of processors. Now it seems that the industry is actively embracing photon interconnect technology, aiming to break through the speed and bandwidth limitations of traditional electronic interconnects.

Beyond the aforementioned fields, laser fusion is also a frequently mentioned term this year. However, true commercialization is still some time away. Multiple rounds of investments were made in global nuclear fusion startups in 2024, but the amounts were mostly in the millions of dollars. These funds are sufficient to support the construction of other laser facilities, but they are far from enough for laser fusion testing facilities.
Although NIF has made good progress this year and is expected to achieve an output of 5.2MJ by 2024, it still faces many problems: which laser fusion process will achieve net gain, that is, the energy generated exceeds the energy required by the laser? What is the goal of mass production?

To address this, we first need a pump laser that is larger and more efficient than any product we currently have, and optical devices that can withstand long-term high-power, high-energy, and high-intensity operations. Germany is currently conducting research and development on the above-mentioned projects, preparing necessary components for laser fusion power plants, developing more efficient laser diodes, and efficient manufacturing technologies.

At the industrial level, TRUMPF, Jenoptik, Laserline, and AMS OSRAM are involved; At the research level, ILT and FBH are also involved.
Although the actual laser process for nuclear fusion has not yet been defined, lasers and optical devices used for nuclear fusion may soon contribute to the profits of their manufacturers.

In addition, laser communication, quantum technology, and the application of laser technology in the field of new energy are expected to see significant development and breakthroughs by 2025.

Source: Yangtze River Delta Laser Alliance

İlgili öneriler
  • Microcomb launches a simplified design for powerful lasers based on chips

    Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty ...

    2024-05-25
    Çeviriyi gör
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Çeviriyi gör
  • Multinational research team achieves breakthrough in diamond Raman laser oscillator

    Recently, the team led by Professor Lv Zhiwei and Professor Bai Zhenxu from Hebei University of Technology, in collaboration with Professor Richard Mildren from Macquarie University in Australia and Professor Takashige Omatsu from Chiba University in Japan, successfully achieved direct output of Raman vortex optical rotation with large wavelength extension in a diamond Raman laser oscillator. This...

    02-27
    Çeviriyi gör
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    Çeviriyi gör
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    Çeviriyi gör