Türkçe

RTX Raytheon Company will develop ultra wide bandgap semiconductors for ultraviolet lasers

721
2024-09-30 14:11:00
Çeviriyi gör

The UWBGS program will develop and optimize ultra wide bandgap materials and manufacturing processes for the next revolution in the semiconductor electronics field.

US military researchers need to develop new integrated circuit substrates, device layers, junctions, and low resistance electrical contacts for the new generation of ultra wide bandgap semiconductors. They found a solution from RTX company.

On September 13, 2024, personnel from the Defense Advanced Research Projects Agency (DARPA) located in Arlington, Virginia, announced a $5.3 million contract with the RTX Raytheon division in Arlington, Virginia, for the Ultra Wide Bandgap Semiconductor (UWBGS) project.

The UWBGS project will focus on developing and optimizing ultra wide bandgap materials and manufacturing processes to embrace the next revolution in the semiconductor electronics field. Ultra wide bandgap technology represents a new type of semiconductor that can be used for future RF and high-power electronics, deep ultraviolet electro-optic, quantum electronics, and system applications that must operate in harsh environments.

UWBGS will lay the foundation for producible and reliable high-performance ultra bandgap devices for various defense and commercial applications, such as high-power RF switches; High power density RF amplifier; High power RF protection device; High voltage switch; High temperature electronic devices; And deep ultraviolet lasers and light-emitting diodes.

This project will address some key technical challenges, such as achieving high-quality ultra wide bandgap materials, customizing the electrical properties of ultra wide bandgap materials, creating homogeneous and heterogeneous structures with abrupt junctions and low defect density, and ultra-low resistance electrical contacts. UWBGS will produce device testing structures to quantify improvements in these areas. To achieve the goal, the plan will fully utilize the latest developments in ultra wide bandgap materials.

Experts from the DARPA Microsystems Technology Office are focusing on two types of ultra wide bandgap devices: low defect density substrates with diameters greater than 100 millimeters; A device layer with high doping efficiency, mutated homojunctions and heterojunctions, low junction defect density, and ultra-low resistance electrical contacts.

DARPA researchers have stated that ultra wide bandgap materials such as aluminum nitride, cubic boron nitride, and diamond have the potential to revolutionize the application of semiconductor electronic devices, such as high-power RF switches and limiters, high-power density RF amplifiers for radar and communication systems, high-voltage switches for power electronics, high-temperature electronic devices and sensors for extreme environments, deep ultraviolet light emitting diodes (LEDs), and lasers.

However, the poor quality of ultra wide bandgap materials today limits their performance, and scientists must overcome multiple technical challenges to make this technology a success.

During the three-year UWBGS program, Raytheon engineers will focus on improving the material quality of device layers and junctions, as well as enhancing the electrical quality of metal contacts.

To this end, Raytheon Company will focus on three areas: large-area ultra wide bandgap substrates; Doping agents for ultra wide and wide forbidden homojunctions and heterojunctions; And a mixture of ultra-low resistance electrical contacts and ultra wide width forbidden materials.

Source: Yangtze River Delta Laser Alliance

İlgili öneriler
  • Focusing on Lithuanian solid-state and fiber laser manufacturer EKSPLA

    In this interview, Dr. Antonio Castelo, EPIC Biomedical and Laser Technology Manager, had a conversation with Aldas Juronis, CEO of EKSPLA, a Lithuanian innovative solid-state and fiber laser manufacturer.What is the background of your appointment as the CEO of EKSPLA?In 1994, I graduated from Kaonas University of Technology in Lithuania with a Bachelor's degree in Radio Electronic Engineering. At...

    2023-11-07
    Çeviriyi gör
  • Amplitude launches femtosecond lasers for industrial applications

    Recently, French femtosecond pulse and high peak power (PW class) laser manufacturer Amplitude announced that the company has launched a newly designed Satsuma X femtosecond laser, setting a new benchmark for industrial environments.This product was first announced in 2022 and is now available in a brand new design with proven durability and versatility. In pursuit of excellence and customer satis...

    2024-07-02
    Çeviriyi gör
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    Çeviriyi gör
  • Tiedra Famaceutica uses Macsa ID's SPA2 CB laser marking system

    Tiedra Famaceutica was founded by members of the Tiedra family in 2003 and is a manufacturer of contact lenses, health and ophthalmic products, as well as diagnostic instruments used in optometry and ophthalmic clinics.Before installing the SPA2 CB laser model for Macsa id, Tiedra used a pantograph, which is a quadrilateral system composed of hinged rods. This manual process provides limited marki...

    2023-12-14
    Çeviriyi gör
  • Shanghai Optics and Machinery Institute has made progress in the development of picosecond reflectors based on composite materials

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made progress in the research of picosecond reflectors based on composite materials. The relevant research results are titled "Hybrid material based mirror coatings for picosecond laser applications" and published in Optics and Laser Techn...

    2024-06-12
    Çeviriyi gör