Türkçe

Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

457
2024-08-09 14:10:35
Çeviriyi gör

The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;
An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;

Based on over 20 years of experience in pulse laser technology.

Shanghai, China, August 8, 2024- AMS, a leading global optical solutions provider, announced today that it will launch an innovative high-performance 8-channel 915nm SMT pulse laser - SPL S8L91A_3 A01- to empower autonomous driving, simplify system design, and enhance performance, making long-range detection lidar more efficient and reliable. The SPL S8L91A_3 encapsulated by QFN has been applied to the laser radar systems of autonomous vehicle such as passenger cars, trucks and driverless taxis, greatly improving the operation, navigation and data processing capabilities of the auto drive system.

SPL S8L91A_3 A01 application image (Image: AMS Osram)

In autonomous driving applications, SPL S8L91A_3 A01 is used to significantly enhance long-range high-resolution LiDAR systems. With AEC-Q102 certification and an 8-channel EEL (edge emitting laser) packaged in QFN, AMS Osram now offers a more diverse range of infrared components for system developers to choose from. The peak optical power of this new product is 1000W, with an efficiency of up to 30% and outstanding performance.

Autonomous driving is one of the most discussed topics about the future, and most system suppliers firmly believe that LiDAR is essential for advanced autonomous driving. For over 20 years, in the field of development and production of automotive LiDAR pulse infrared lasers, AMS Osram has been an important participant in the autonomous driving market - delivering over 20 million units, with experience and quality fully recognized by the market. SPL S8L91A_3 A01 is the latest product lineup launched based on the company's rich experience in automotive LiDAR technology.

SPL S8L91A_3 A01 is an advanced infrared high-power SMT laser tailored for laser radar applications. It adopts a single-chip integrated 8-channel design, with each laser channel providing 125W of power, resulting in a total peak optical power of 1000W, greatly enhancing the performance of long-distance laser radar systems that are crucial for highway autonomous driving. This laser has 4 individually addressable anodes, each connected to two parallel operating laser channels. Thanks to the addressing function, customers are able to flexibly design the final product.

SPL S8L91A_3 A01 product image (Image: AMS Osram)

The use of integrated laser packaging can achieve more compact and efficient settings, without the need for alignment between multiple components, thus simplifying the design and manufacturing process. This integration not only shortens development time, but also significantly improves the reliability and performance of the final product. The design of this laser adopts the proprietary wavelength stabilization technology of AMS Osram, which can significantly reduce wavelength drift caused by temperature changes, thereby improving the signal-to-noise ratio (SNR) of the laser radar system and expanding the detection range.

SPL S8L91A_3 A01 is designed to meet the strict requirements of the automotive industry, with performance specifications that meet and exceed AEC-Q certification standards. The QFN packaging of this laser is key to ensuring reliable design and providing a durable solution to meet the challenges of automotive environments. In addition to the laser radar system that can be widely used in autonomous vehicle, the new laser can be used in industrial laser radar, which can improve the performance of applications such as robots, security monitoring, smart cities and the last mile delivery.

Our new 8-channel laser module will revolutionize the autonomous driving industry. It simplifies system design and improves performance, making long-range LiDAR systems more effective and reliable. By integrating our advanced wavelength stabilization technology, we can ensure excellent performance under different working conditions, "said Clemens Hofmann, Senior Chief Engineer of AMS Osram Lidar
SPL S8L91A_3 A01 will be launched this autumn.

Source: AMS Osram

İlgili öneriler
  • Chinese researchers have developed for the first time a room temperature HoYLF thin film laser

    In a study published in Optics Express, the research team led by Professor Fu Yuxi of the Xi'an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences developed the room temperature holmium doped lithium yttrium fluoride (Ho: YLF) composite thin slice laser for the first time, which can achieve high efficiency and high-quality CW laser output.Laser devices operating...

    02-21
    Çeviriyi gör
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    Çeviriyi gör
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    Çeviriyi gör
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Çeviriyi gör
  • Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

    Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semicon...

    2024-01-31
    Çeviriyi gör