Türkçe

The semiconductor Institute has made progress in the study of high power and low noise quantum dot DFB single-mode lasers

196
2023-09-05 15:38:36
Çeviriyi gör

Recently, the team of Yang Tao-Yang Xiaoguang, a researcher at the Key Laboratory of Materials Science of the Institute of Semiconductors of the Chinese Academy of Sciences, and Lu Dan, a researcher, together with Ji Chen, a professor at the Zhijiang Laboratory of Zhejiang University, have made important progress in the research of high-power, low-noise quantum dot DFB single-mode lasers.

Distributed feedback (DFB) lasers are compact and dynamic single-mode, and are the core light sources for applications such as high-speed optical communication, large-scale photon integration, liDAR and microwave photonics. 

In particular, the field of artificial intelligence represented by ChatGPT shows an explosion trend, which urgently needs optical computing chips with high computing power, high integration and low power consumption as physical support, and puts forward higher requirements for the temperature stability, high temperature operating characteristics, optical feedback stability, single mode quality, and volume cost of the core light source.

By using a high density, low defect laminated InAs/GaAs quantum dot structure as the active region and a low loss lateral coupling grating as an efficient mode selection structure, the team developed a high-performance O-band quantum dot DFB laser with high power, high stability, low noise and anti-feedback in a wide temperature region. In the range of 25-85 °C, the output power of the laser is greater than 100 mW, and the maximum edge mode rejection ratio is more than 62 dB. The lowest white noise level is only 515 Hz2 Hz-1, and the corresponding intrinsic line width is as low as 1.62 kHz. The minimum average RIN is only -166 dB/Hz (0.1-20 GHz). 

In addition, the anti-optical feedback threshold of the laser is as high as -8 dB, which meets the technical standards for stable operation without external optical isolators. The device has excellent comprehensive performance, low cost and small size, and has a large-scale application prospect in the fields of large-capacity optical communication, high-speed on-chip optical interconnection, high-precision detection, etc.

The relevant research results are as follows: High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers. Published in Laser & Photonics Reviews. The research work is supported by the National key research and development Plan and the National Natural Science Foundation.

Figure 1. Morphology and fluorescence characteristics of quantum dot materials, as well as device and grating structures

Figure 2. Output characteristics, spectral characteristics, optical frequency noise characteristics and spectral stability under external optical feedback of the device

Paper link: https://doi.org/10.1002/lpor.202200979

Source: Semiconductor Research Institute

İlgili öneriler
  • Laser Photonics officially launches its SaberTech laser cutting system

    Recently, Laser Photonics (LPC) officially launched its SaberTech laser cutting system. This system not only enriches the product line of LPC's laser cleaning, welding, marking, and engraving systems, but also marks another important breakthrough for the company in the field of laser technology. This product release is another heavyweight measure after LPC's latest generation laser cleaning system...

    2024-06-19
    Çeviriyi gör
  • BLM Group launches a new LT12 laser tube cutting system

    Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, signi...

    2024-04-18
    Çeviriyi gör
  • EV Group launches EVG 850 NanoClean system for ultra-thin chip stacking for advanced packaging

    EV Group, a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets, yesterday launched the EVG850 NanoClean layer release system, which is the first product platform to adopt EVG's revolutionary NanoClean technology.The EVG850 NanoClean system combines infrared lasers with specially formulated inorganic release materials, and can ...

    2023-12-08
    Çeviriyi gör
  • Emerson launches a new type of laser welding machine that can efficiently and flexibly process medical precision components

    Recently, Emerson, the global leader in industrial automation, launched the all-new Branson ™ The GLX-1 laser welding machine, with its outstanding flexibility and innovative technology, accurately meets the urgent market demand for connecting small, complex or delicate plastic components. Its compact volume and modular design make it easy to integrate into the ISO-8 cleanroom environment, while t...

    2024-06-04
    Çeviriyi gör
  • Progress made in the research and development of high-performance electrically pumped topology lasers by the Institute of Semiconductors, Chinese Academy of Sciences

    Topological laser (TL) is a laser device designed and manufactured using the principles of topological optics, which can produce a robust single-mode laser and is an ideal light source for future new optoelectronic integrated chips. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection a...

    2024-06-06
    Çeviriyi gör