Türkçe

Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

208
2024-07-23 11:31:18
Çeviriyi gör

Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer testing".

High precision optical components have been fully applied in fields such as laser technology, optical communication, medical imaging, astronomy and space exploration, semiconductor manufacturing, and scientific research. The use of interferometers is currently the main method for high-precision optical detection. In order to obtain the true surface shape error of the test component, the wavefront calibration method must be used to calibrate the wavefront error of the interferometer test. However, there is currently no complete method for wavefront calibration in optical processing.

Figure 1. Ring error generation

 


Figure 2. Results of Ring Error Repair

In this work, the research team proposed a new high-precision optical surface wavefront correction method to address the difference between wavefront error in Fizeau interferometer testing and actual surface error. The main content includes fitting optical surface function parameters, correcting lateral distortion, eliminating misalignment errors, and calculating concave surface errors. And the error of this method was analyzed in depth from the aspects of function parameter fitting, ray tracing, interpolation, etc. The wavefront calibration of the off-axis parabolic mirror in the zero position test configuration proves the effectiveness of this method. The results showed that the circular error generated by the experiment was significantly reduced, and the off-axis error increased from 0.23 λ to 0.05 λ (λ=632.8nm). The PV deviation from the non spherical surface exceeded 8.5mm. This study is of great significance in the high-precision optical component detection process.

Source: Shanghai Institute of Optics and Fine Mechanics

İlgili öneriler
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    Çeviriyi gör
  • German optoelectronic component manufacturer collaborates heavily to develop VCSELs lasers

    This collaboration deeply integrates the unique expertise and cutting-edge technological achievements of both companies in the field of optoelectronics, aiming to broaden the boundaries of optoelectronics innovation.EPIGAP OSA Photonics GmbH, as a leader in the research and manufacturing of optoelectronic components in Germany, is deeply rooted in multiple fields such as medical technology, indust...

    2024-08-06
    Çeviriyi gör
  • Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

    Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producin...

    2024-04-18
    Çeviriyi gör
  • Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

    According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.It is not that the laser has been achieved, as the research project aims to cha...

    2024-01-04
    Çeviriyi gör
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    Çeviriyi gör