Türkçe

Shanghai Microsystems Institute has developed a high-speed photon detector with distinguishable photon numbers

445
2024-07-12 11:14:40
Çeviriyi gör

Recently, Li Hao and You Lixing's team from the Chinese Academy of Sciences Shanghai Institute of Microsystems and Information Technology developed an ultrahigh speed, photon number resolvable optical quantum detector with a maximum count rate of 5GHz and a photon number resolution of 61 by using the sandwich structure superconducting nanowires and multi wires working in parallel. The related research results, titled "Superconducting single photon detector with speed of 5 GHz and photon number resolution of 61", were published online in Photonics Research and were selected for editorial recommendation.

In recent years, superconducting nanowire single photon detectors have been widely used in quantum communication, optical quantum computing, and quantum mechanics principle verification due to their high efficiency, low dark count rate, and excellent time resolution.

The team has developed a highly efficient, ultra high speed, and high photon resolution superconducting detector integrated system. To ensure the portability and reliability of the detection system, the project has built a cooling integrated system based on a GM small refrigeration mechanism. The system supports 64 electrical channels and has a minimum operating temperature of 2.3 K. The detector chip integrates 64 superconducting nanowires on a distributed Bragg reflector, achieving both improved photon absorption and detection speed. After characterization, the yield of nanowire preparation was 61/64, and the system detection efficiency reached 90% at a wavelength of 1550 nm. The maximum counting rate was 5.2 GHz, and the counting rate was 1.7 GHz when the detection efficiency decreased by 3dB. The photon number resolution was 61. The performance indicators of this detection system are expected to support applications such as deep space laser communication, high-speed quantum communication, and basic quantum optical experiments.

The research work was supported by the Science and Technology Innovation 2030 Major Project, the National Natural Science Foundation of China, the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the "Sailing Plan" of Shanghai.


Device structure (a), superconducting nanowires (b), device packaging (c), and refrigeration system (d)

Source: Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Sciences

İlgili öneriler
  • Petrobras will use laser beams to measure wind speed and direction

    Petrobras announced last week that it plans to use laser beams to measure wind speed and direction. The idea is that these data will be used to improve the operation of the wind turbines maintained by this state-owned company in North Rio Grande do.The total investment of the 2.0 version of this device reaches R $11.3 million, known as the offshore wind assessment remote buoy.This technology can a...

    2023-10-24
    Çeviriyi gör
  • Breakthrough in Silicon Based Room Temperature Continuous Wave Topological Dirac Vortex Microcavity Laser

    With the explosive growth of data traffic, the market is extremely eager for hybrid photonic integrated circuits that can combine various optical components on a single chip.Silicon is an excellent material for photonic integrated circuits (PICs), but achieving high-performance laser sources in silicon still poses challenges. The monolithic integration of III-V quantum dot (QD) lasers on silicon i...

    2023-10-26
    Çeviriyi gör
  • A replica of an arcade made with a 3D printer in the 1970s

    A game museum has 3D printed a replica of a historic arcade computer space. The arcade museum in Stroud, Gloucestershire lacks the first commercial arcade video game. They collaborated with Heber company to create a real replica. Neil Thomas, the director of the arcade museum, said that because it is a replica, not an original, they are not "afraid" of letting people play with it.A spokesperson...

    2024-05-29
    Çeviriyi gör
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    Çeviriyi gör
  • Brother launches a series of color LED laser printers for homes and offices

    Brother is an innovative global company that proudly launches its latest series of color LED laser printers. The new printer series is colorful and seamlessly connected, designed specifically for home and small office environments.The company's latest product aims to improve productivity in home and small business environments, combining excellent printing quality with excellent printing speed. Ea...

    2024-03-20
    Çeviriyi gör