Türkçe

Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

811
2024-07-11 11:25:23
Çeviriyi gör

Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric amplification (XOPA), and completed the experimental demonstration based on the front platform of the SG - Ⅱ 5PW laser device. The related achievements are titled "Optical Parametric Amplification in Crossed Fabry Perot Cells" and published in Laser Photonics Reviews.

Optical parametric amplification (OPA) and chirped pulse optical parametric amplification (OPCPA) are important technological routes for rapidly developing high-power laser systems, and are also the mainstream technological routes for future tens to hundreds of watt laser systems. The development of this field has put forward comprehensive requirements for laser amplification technology in terms of efficiency, energy, bandwidth, gain, beam quality, signal-to-noise ratio, and shaping ability.

The research team placed nonlinear crystals in a cross Fabry Perot cavity, constrained signal light and pump light to achieve multi-pass transmission and energy conversion, phased elimination of idle light, suppression of mixing three wave energy backflow, and thus achieving monotonic extraction of signal light and pump light energy. In the experiment, the YCOB crystal provided by the Shanghai Institute of Ceramics was used to achieve an output capability of 56.28% conversion efficiency of pump light from signal light in the 800nm wavelength band and a spectral width of 120nm; In addition, researchers designed unequal cavity lengths for dual Fabry Perot cavities, achieving high contrast amplification and shaping of chirped pulse signal light. This study indicates that the XOPA configuration has the ability to shape in the time, space, and frequency domains under the premise of high conversion efficiency, and is generally suitable for non collinear optical parametric amplification processes in all bands and nonlinear crystals, which is of great significance for improving the comprehensive performance of high-power laser systems.

Relevant work has been supported by the key projects of international scientific and technological innovation cooperation between the Ministry of Science and Technology, the National Natural Science Foundation of China, the Shanghai Natural Science Foundation, the Class A project of the Chinese Academy of Sciences strategic leading science and technology project and the Shanghai Sailing Plan project.

Figure 1 Schematic diagram of XOPA configuration

Figure 2: (a) Spectral evolution and (b) Theoretical simulation and experimental results of the 7-pass amplification process of XOPA

Source: Shanghai Institute of Optics and Precision Machinery

İlgili öneriler
  • Progress has been made in the research of phase modulation of terahertz programmable metasurfaces based on free carrier plasmonic dispersion effect

    Recently, the team of Situ Guohai and Guo Jinying from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, and the School of Microelectronics at Shanghai University collaborated to propose a terahertz phase controlled programmable metasurface design scheme based on free carrier plasma dispersion effect. The rela...

    2024-07-26
    Çeviriyi gör
  • Lumibird signs a 20 million euro contract to provide laser rangefinders for airborne defense applications

    Recently, European laser technology leader Lumibird announced the signing of a major contract to provide laser rangefinders for airborne defense applications.The contract is worth approximately 20 million euros, adding to Lumibird's existing business in laser rangefinders. It covers the supply of over 100 laser rangefinders over a three-year period starting from the third quarter of 2024, as well ...

    2023-10-01
    Çeviriyi gör
  • Zeiss Medical Technology nominated for the 2025 German Future Award

    Germany’s Office of the Federal President has announced the nominations for the German Future Prize 2025 (“Deutscher Zukunftspreis”). This year’s nominees include Dr. Mark Bischoff, Dr. Gregor Stobrawa and Dirk Mühlhoff from Zeiss Medical Technology (ZMT), for their project for minimally-invasive lenticule extraction to correct refractive errors. Nominated: Dirk Mühlhoff, Mark Bischoff, and Gr...

    09-22
    Çeviriyi gör
  • Intelligent laser welding with dynamic beam shaping function can reduce the demand for filler wire

    In EU project ALBATROSS, Fraunhofer IWS has developed battery housing for E-vehicles.Laser processes with dynamic beam shaping create stable joints even in challenging material combinations. Recent applications demonstrate how to eliminate filler materials while improving quality, energy efficiency, and production logic.Fraunhofer Institute for Material and Beam Technology (IWS) will present novel...

    09-05
    Çeviriyi gör
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    Çeviriyi gör