Türkçe

The Key Role of Laser Pointing Stability in the Application of Lithography Systems

443
2024-07-02 14:24:25
Çeviriyi gör

Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask onto the processed surface. The main steps of photolithography of silicon dioxide in semiconductor chips include coating photoresist, aligning the mask and exposing it, dissolving the photosensitive photoresist layer with developer, dissolving the unprotected silicon dioxide layer with etchant, and removing the photosensitive photoresist layer.

In lithography systems, stable laser pointing is crucial as it directly affects the accuracy and consistency of the lithography pattern. There are three main factors that affect the stability of beam pointing, namely the displacement of the laser itself, the vibration differences between lasers and lighting systems on different bases, and the disturbances of the optical system during transmission. These disturbances will have a serious impact on the quality of lithography.

Firstly, the stability of laser pointing is crucial for ensuring precise etching of the pattern. During the lithography process, the laser beam needs to be precisely irradiated onto a specific area on the silicon wafer to achieve accurate transfer of patterns. If the laser pointing is unstable, it can cause problems such as displacement of the graphic position and size changes, seriously affecting the quality and performance of the product.

Secondly, the stability of laser pointing is also related to the repeatability and consistency of lithography. In semiconductor manufacturing, it is often necessary to perform photolithography on a large number of silicon wafers, which requires a high degree of repeatability and consistency in the photolithography process. If the laser pointing is unstable, the results of each photolithography will vary, resulting in inconsistent performance between product batches, increasing manufacturing difficulty and cost.

Therefore, the stability of laser pointing is particularly important under the constantly improving accuracy requirements.


We can achieve relative stability of the beam by reducing vibration and temperature changes, but this is only a passive compensation method and cannot completely avoid these interferences. In this regard, an active compensation system can be used to adjust the optical path and turn the beam back when it deviates, making the environmental requirements less stringent.

The Aligna laser beam pointing stabilization system from TEM company can effectively solve and achieve the above functions. The system consists of two Fast Reflecting Mirrors (FSMs), a Position Detector (PSD), and a Control Cabinet. The deflection of FSM can be achieved by combining electric motors and piezoelectric ceramics, ensuring both wide range and high accuracy of the fast reflector. Coupled with a high-resolution position detector (PSD), the total accuracy of the system can reach the sub micron level. In addition, response time is also crucial for systems that require real-time stability of laser beams, and excellent algorithms can limit it to the range of 0.2ms with a closed-loop bandwidth exceeding 5KHZ.

The following diagram is a schematic diagram of the beam detection and stabilization system. After passing through two fast reflection mirrors R1 and R2, the laser is incident on the beam splitter BS1. The transmitted light is used for subsequent experiments and normal use, and a small amount of reflected light will enter the PSD for beam detection. PSD is a photoelectric device based on the transverse photoelectric response of a semiconductor PN junction. According to the output voltage of the centroid of the incident light spot, two PSDs are used to detect the position deviation and angle deviation of the beam, respectively. After the controller detects the deviation information, it passes the feedback information to the FSM through an algorithm, controls the rotation of the FSM, and realizes the pointing correction of the main beam.

The following figure shows the displacement of the spot position before and after using the system. It can be clearly seen that the spot position is unstable and has a significant displacement before the system works; After the system starts working, the position of the spot is basically controlled near the origin, and the stability of the position is significantly improved.

Source: Yangtze River Delta Laser Alliance

İlgili öneriler
  • Researchers use a new frequency comb to capture photon high-speed processes

    From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or ...

    2023-11-02
    Çeviriyi gör
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    Çeviriyi gör
  • In the development of modern electronic welding technology, the application advantages of laser soldering process

    With the rapid development of modern electronic information technology, integrated circuit chip packaging forms are also emerging in an endless stream, and the package density is getting higher and higher, which greatly promotes the development of electronic products to multi-function, high performance, high reliability and low cost.So far, through hole technology (THT) and surface mount technolog...

    2023-09-13
    Çeviriyi gör
  • LASIT's Laser Revolution: Illuminating the Path to a Greener Future

    In the breakthrough transformation towards sustainable industrial practices, LASIT is at the forefront of the ecological revolution in laser marking technology. This evolution is not just about labeling products; This is about marking a sustainable future.Environmental Innovation: A New Era of Industrial PrecisionLASIT's laser technology is a model of environmental protection. Unlike traditional m...

    2023-11-28
    Çeviriyi gör
  • The Danish authorities have approved the sale of this laser manufacturer to Hamamatsu, Japan

    On May 6, 2024 local time, the Danish Business Administration (DBA) approved the sale of NKT Photonics to Photonics Management Europe S.R.L, a wholly-owned subsidiary of Hamamatsu Photonics K.K.On that day, Hamamatsu Photonics received a notice from the Danish Business Administration stating that the acquisition had been approved:(Source: The Danish Business Authority)NKT Photonics stated that the...

    2024-05-09
    Çeviriyi gör