Türkçe

Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

207
2024-06-13 15:59:01
Çeviriyi gör

Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.

Since the 1960s, lasers have completely changed the world and are now indispensable in modern applications, from cutting-edge surgery and precision manufacturing to fiber optic data transmission.

It can also scale down optical technologies in various other applications, such as LiDAR, microwave photonics, optical frequency synthesis, and free space communication.

"The application fields of this new type of erbium-doped integrated laser are almost unlimited."
EDWATEC SA, a subsidiary of the laboratory, is an integrated device manufacturer that now offers devices based on rare earth ion doped photonic integrated circuits, including high-performance amplifiers and lasers.
Filters allow for dynamic tuning of laser wavelengths over a wide range, making them versatile and suitable for various applications. This design supports stable single-mode lasers, with an inherent narrow linewidth of only 50 Hz.

It also allows for significant side mode suppression - the laser can emit light at a single, consistent frequency while minimizing the intensity of other frequencies ("side modes"). This ensures a "clean" and stable output for high-precision applications throughout the entire spectrum.

Power, accuracy, stability, low noise
The output power of chip level erbium-based fiber laser exceeds 10 mW, with a side mode suppression ratio greater than 70 dB, and its performance is superior to many traditional systems.

It also has a very narrow linewidth, which means that the light it emits is very pure and stable, which is crucial for coherent applications such as sensing, gyroscopes, LiDAR, and optical frequency measurement.

The micro ring based vernier filter provides wide wavelength tunability for 40 nm lasers in the C-band and L-band (wavelength range used in telecommunications), surpassing traditional fiber lasers in tuning and low spectral stray indicators ("stray" is an unnecessary frequency) while maintaining compatibility with current semiconductor manufacturing processes.

Next generation laser
Miniaturizing and integrating erbium fiber lasers into chip level devices can reduce their overall cost, making them suitable for portable and highly integrated systems in telecommunications, medical diagnostics, and consumer electronics.

Now, scientists led by Dr. Liu Yang and Professor Tobias Kippenberg from the Federal Institute of Technology in Lausanne have established the first ever chip integrated erbium-doped waveguide laser. The performance of this laser is close to that of fiber based lasers, combining wide wavelength tunability with the practicality of chip level photon integration. This breakthrough was published in the journal Nature Photonics.

But as the demand for laser based applications continues to grow, the challenges also increase. For example, the market for fiber lasers is growing and is currently used in industrial cutting, welding, and marking applications.

Fiber lasers use fibers doped with rare earth elements (erbium, ytterbium, neodymium, etc.) as their optical gain source (the part that produces the laser). They emit high-quality beams of light, have high power output, are efficient, low maintenance, durable, and typically smaller than gas lasers. Fiber lasers are also the gold standard for low phase noise, which means their beams will remain stable over time.

However, despite this, the demand for miniaturization of chip level fiber lasers continues to grow. Erbium based fiber lasers are particularly interesting because they meet all the requirements for maintaining high coherence and stability of the laser. However, miniaturizing them poses challenges in maintaining their performance on a small scale.

Building chip level lasers
Researchers have developed their chip level erbium laser using state-of-the-art manufacturing techniques. They first built a one meter on-chip optical cavity (a set of mirrors that provide optical feedback) based on ultra-low loss silicon nitride photonic integrated circuits.

"Although the chip size is compact, we are able to design the laser cavity in meter lengths thanks to the integration of these micro ring resonators, which effectively expand the optical path without the need for physical amplification equipment," said Dr. Liu.

Then, the team implanted high concentrations of erbium ions into the circuit to selectively generate the active gain medium required for the laser. Finally, they integrated citcuit with III-V semiconductor pumped lasers to excite erbium ions, enabling them to emit light and generate laser beams.

In order to improve the performance of the laser and achieve precise wavelength control, researchers have designed an innovative cavity design with a micro ring based cursor filter, which is a filter that can select specific frequency light.

Source: Laser Net

İlgili öneriler
  • The Trends and Challenges of the Metal 3D Printing Industry in 2025

    In the past decade, metal 3D printing technology has experienced rapid development, from the initial production of orthopedic implants to the manufacturing of rocket boosters. This technology has become an indispensable part of multiple key industries. With the advancement of technology and the expansion of the market, we are witnessing the revival of electron beam melting (EBM) technology and the...

    01-21
    Çeviriyi gör
  • 150 kW Ultra High Power Laser Sensor Released

    Recently, MKS announced the launch of a brand new Ophir ® A 150 kW ultra-high power laser sensor designed specifically for measuring ultra-high power levels up to 150 kW. This sensor has excellent accuracy and reliability, suitable for industrial and defense fields.This water-cooled calorimeter has a working wavelength range of 900-1100 nm and can measure power from 10 kW to 150 kW. Its extremely ...

    2024-12-27
    Çeviriyi gör
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    Çeviriyi gör
  • $75 million, this laser equipment manufacturer will be acquired

    Rocket Lab USA continues its path of vertical integration and has signed an exclusive but non binding agreement with MynaricAG, a German laser communication terminal (LCT) supplier and Rocket Lab supplier, to acquire the company for $75 million in cash or stock.If Mynaric achieves its revenue target, it will pay an additional revenue of up to $75 million. This acquisition depends on whether Myna...

    03-25
    Çeviriyi gör
  • RAISE3D launches its innovative 3D printer series and filament series

    3D printer manufacturer Raise3D has launched a new Fused Manufacturing (FFF) 3D printer series called Pro3 HS and a supercore filament series.The Pro3 HS series is equipped with a motion control system, which improves speed, accuracy, and simplifies the manufacturing of large composite components. Raise3D's Hyper Core filament has a dense fiber core and well arranged carbon fibers, which can enha...

    2024-06-11
    Çeviriyi gör